Research of One-Dimensional Consolidation of Clays Considering Their Rehological Properties

Chen Zhuo, D. Jingen, Y. Baohua, Weng Haoyang, Wang Jie, Yan Xinjiang
{"title":"Research of One-Dimensional Consolidation of Clays Considering Their Rehological Properties","authors":"Chen Zhuo, D. Jingen, Y. Baohua, Weng Haoyang, Wang Jie, Yan Xinjiang","doi":"10.21625/ARCHIVE.V2I4.383","DOIUrl":null,"url":null,"abstract":"The paper concerns the influence of time and strain-rate effects on the clays in one-dimensional consolidation under constant effective stress. An improved creep constitutive model is deduced, by analyzing the stress-strain theory developed by yin and sekiguchi. Treating the sample as a single system and applying the boundary conditions at the system level, differential mathematical equations to the consolidation problem of clays are obtained. The proposed differential mathematical equations have advantages in their ability to (i) not clarify the primary consolidation and secondary consolidation deformation. The error in calculating consolidation deformation which is caused by the argument about end of primary consolidation can be avoided. (ii) obtain the model parameters easily. How to achieve parameters by experiment is described in detail in the paper. (iii) be programmed and solved readily for the finite difference description of the problem. Results from clays have been used to examine the validity of the model. It is shown that the proposed model can describe the consolidation of clays well.","PeriodicalId":33666,"journal":{"name":"ARCHiveSR","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARCHiveSR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21625/ARCHIVE.V2I4.383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper concerns the influence of time and strain-rate effects on the clays in one-dimensional consolidation under constant effective stress. An improved creep constitutive model is deduced, by analyzing the stress-strain theory developed by yin and sekiguchi. Treating the sample as a single system and applying the boundary conditions at the system level, differential mathematical equations to the consolidation problem of clays are obtained. The proposed differential mathematical equations have advantages in their ability to (i) not clarify the primary consolidation and secondary consolidation deformation. The error in calculating consolidation deformation which is caused by the argument about end of primary consolidation can be avoided. (ii) obtain the model parameters easily. How to achieve parameters by experiment is described in detail in the paper. (iii) be programmed and solved readily for the finite difference description of the problem. Results from clays have been used to examine the validity of the model. It is shown that the proposed model can describe the consolidation of clays well.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑流变特性的粘土一维固结研究
本文研究了在恒定有效应力作用下,时间和应变率效应对土体一维固结的影响。通过对yin和sekiguchi的应力-应变理论的分析,推导出一种改进的蠕变本构模型。将试样视为单一系统,应用系统级边界条件,得到了土体固结问题的微分数学方程。所提出的微分数学方程具有以下优点:(1)不明确初级固结变形和次级固结变形。可以避免因初次固结结束的争论而引起的固结变形计算误差。(ii)容易获得模型参数。文中详细介绍了如何通过实验实现参数。(iii)对问题的有限差分描述进行编程并易于求解。粘土的结果已被用来检验模型的有效性。结果表明,该模型能较好地描述粘土的固结过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
8
审稿时长
12 weeks
期刊最新文献
Endangered Religious Cultural Heritage Public Space as Urban Cultural and Tourism Education Facility with Historical Atmosphere Palestine Hotel in the Old City of Hebron, Between Modernity and Traditional Dwelling Architecture During the 19th-20th Century Taj Mahal is the Crystallization of Iranian Architecture and a Symbol of God's Throne on Earth Contradictions of Saint Paul’s Cathedral
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1