Estimación del grado de severidad de incendios en el sur de la provincia de Buenos Aires, Argentina, usando Sentinel-2 y su comparación con Landsat-8

IF 0.4 Q4 REMOTE SENSING Revista de Teledeteccion Pub Date : 2018-06-29 DOI:10.4995/RAET.2018.8934
J. Delegido, Alejandro Pezzola, A. Casella, Cristina Winschel, Esther Patricia Urrego, J. C. Jimenez, J. A. Sobrino, Guillem Sòria, J. Moreno
{"title":"Estimación del grado de severidad de incendios en el sur de la provincia de Buenos Aires, Argentina, usando Sentinel-2 y su comparación con Landsat-8","authors":"J. Delegido, Alejandro Pezzola, A. Casella, Cristina Winschel, Esther Patricia Urrego, J. C. Jimenez, J. A. Sobrino, Guillem Sòria, J. Moreno","doi":"10.4995/RAET.2018.8934","DOIUrl":null,"url":null,"abstract":"Assessment of rural fire severity is fundamental to evaluate fire damages and to analyze recovery processes in a low-cost and efficient way. Burnt areas covering shrubs and grasslands were estimated in more than 30,000 km2  in Argentina from December 2016 to January 2017. The study area presented in this work is located in the South of the Buenos Aires province, and it covers a semiarid area with the presence of xerophilous shrubs and grasslands. This is one of the most abundant ecosystem in Central and Southern Argentina. Field campaigns were carried out over the area affected by the fire in order to georreference the burnt plots and characterized the fire severity in 5 levels. The objective of this work is to analyze the feasibility of new satellites Sentinel-2 for fire studies, as well as provide a comparison to Landsat-8 derived results, because this mission has been one of the most used in it. Pre-fire and postfire Sentinel-2 and Landsat-8 imagery were used to analyze different band combinations to compute a Normalized Difference Spectral Index (NDSI), as well as the difference of this index before and after the fire (dNDSI). Results show a significant correlation (R2 =0.72 and estimation error of 0.77) between dNDSI derived from Sentinel-2 and the severity levels obtained in the field campaign using bands 8a and 12 (NIR and SWIR), the same bands as used in the Normalized Burn Ratio (NBR). Moreover, results derived from Sentinel-2 are better than results derived from Landsat-8 (R2 =0.63 and estimation error of 0.92). Furthermore, it is observed that the correlation is improved when Sentinel-2 bands 6 and 5 (located in the Red-Edge region) are considered (R2 =0.74 and estimation error of 0.76). An inverse correlation has been observed between the recovery of vegetation four months after the fire and the fire severity level.","PeriodicalId":43626,"journal":{"name":"Revista de Teledeteccion","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Teledeteccion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/RAET.2018.8934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 11

Abstract

Assessment of rural fire severity is fundamental to evaluate fire damages and to analyze recovery processes in a low-cost and efficient way. Burnt areas covering shrubs and grasslands were estimated in more than 30,000 km2  in Argentina from December 2016 to January 2017. The study area presented in this work is located in the South of the Buenos Aires province, and it covers a semiarid area with the presence of xerophilous shrubs and grasslands. This is one of the most abundant ecosystem in Central and Southern Argentina. Field campaigns were carried out over the area affected by the fire in order to georreference the burnt plots and characterized the fire severity in 5 levels. The objective of this work is to analyze the feasibility of new satellites Sentinel-2 for fire studies, as well as provide a comparison to Landsat-8 derived results, because this mission has been one of the most used in it. Pre-fire and postfire Sentinel-2 and Landsat-8 imagery were used to analyze different band combinations to compute a Normalized Difference Spectral Index (NDSI), as well as the difference of this index before and after the fire (dNDSI). Results show a significant correlation (R2 =0.72 and estimation error of 0.77) between dNDSI derived from Sentinel-2 and the severity levels obtained in the field campaign using bands 8a and 12 (NIR and SWIR), the same bands as used in the Normalized Burn Ratio (NBR). Moreover, results derived from Sentinel-2 are better than results derived from Landsat-8 (R2 =0.63 and estimation error of 0.92). Furthermore, it is observed that the correlation is improved when Sentinel-2 bands 6 and 5 (located in the Red-Edge region) are considered (R2 =0.74 and estimation error of 0.76). An inverse correlation has been observed between the recovery of vegetation four months after the fire and the fire severity level.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用Sentinel-2估算阿根廷布宜诺斯艾利斯省南部的火灾严重程度,并与Landsat-8进行比较
农村火灾严重程度评估是评估火灾损失和以低成本、高效的方式分析恢复过程的基础。2016年12月至2017年1月,阿根廷覆盖灌木和草原的烧伤面积估计超过30000平方公里。这项工作中提出的研究区域位于布宜诺斯艾利斯省南部,覆盖了一个半干旱地区,有旱生灌木和草地。这是阿根廷中部和南部最丰富的生态系统之一。在受火灾影响的地区进行了实地调查,以确定被烧毁地块的地理位置,并将火灾的严重程度分为5个级别。这项工作的目的是分析新卫星Sentinel-2用于火灾研究的可行性,并与陆地卫星-8得出的结果进行比较,因为这项任务是其中使用最多的任务之一。火灾前和火灾后的Sentinel-3和陆地卫星-8图像用于分析不同的波段组合,以计算归一化差分光谱指数(NDSI),以及火灾前后该指数的差异(dNDSI)。结果显示,Sentinel-2得出的dNDSI与现场活动中使用波段8a和12(NIR和SWIR)获得的严重程度水平之间存在显著相关性(R2=0.72,估计误差为0.77),这些波段与标准化燃烧比(NBR)中使用的波段相同。此外,Sentinel-2的结果优于Landsat-8的结果(R2=0.63,估计误差0.92)。此外,观察到,当考虑Sentinel-2波段6和5(位于红边地区)时,相关性得到了改善(R2=0.74,估计误差为0.76)。火灾发生四个月后植被恢复与火灾严重程度之间存在逆相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista de Teledeteccion
Revista de Teledeteccion REMOTE SENSING-
CiteScore
1.80
自引率
14.30%
发文量
11
审稿时长
10 weeks
期刊最新文献
Clasificación de uso y cobertura del suelo a través de algoritmos de aprendizaje automático: revisión bibliográfica Mapeo semiautomático de áreas quemadas en Chimborazo-Ecuador utilizando medias compuestas de dNBR con umbrales ajustados Análisis espacio-temporal de florecimientos algales nocivos en un lago-cráter tropical usando datos MODIS (2003-2020) Estimación de biomasa y carbono con herramientas de teledetección en bosques secos tropicales del Tolima, Colombia Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1