Expected Proportional Hazard Model in Preventive Maintenance

IF 1.1 Q3 MINING & MINERAL PROCESSING Journal of Mining and Environment Pub Date : 2021-07-08 DOI:10.22044/JME.2021.10812.2051
A. N. Qarahasanlou, M. Ataei, R. Shahabi
{"title":"Expected Proportional Hazard Model in Preventive Maintenance","authors":"A. N. Qarahasanlou, M. Ataei, R. Shahabi","doi":"10.22044/JME.2021.10812.2051","DOIUrl":null,"url":null,"abstract":"Whether directly in the form of expenses or indirectly, the objective of maintenance in the mining industry is self-evident in time losses and loss of production. In this paper, the reliability-based maintenance is examined with a different insight than before. The system goes back to the Good As New (GAN) state or too Bad As Old (BAO) maintenance state; why so, the maintenance of the system shifts to the midrange state. On the other hand, the implementation of repairs is strongly influenced by the environmental factors that are known as the “risk factors”. Therefore, an analysis requires a model that integrates two basic elements: (1) incompleteness of the maintenance effect and (2) risk factors. Thus, an extensive proportional hazard ratio model (EPHM) is used as a combination of the Proportional Hazard Model (PHM) and the Hybrid Imperfect Preventive Maintenance model (HIPM) in order to analyze these elements. In this regards, four different preventive maintenance strategies are proposed. All four strategies are time-based including constant interval or periodic (the first and second strategies) and cyclic interval (the third and fourth strategies). The proposed method is applied for a Komatsu HD785-5 dump-truck in the Songun copper mine as a case study. The PM intervals with a mean value of risk factors for the four activities to reach the 80% reliability for the first and second strategies are about 5 and 48 hours. These intervals for the third strategy are calculated as 48.36, 11.58, 10.25, and 9.035, and for the fourth strategy are 5.06, 4.078, 3.459, and 1.92.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JME.2021.10812.2051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 2

Abstract

Whether directly in the form of expenses or indirectly, the objective of maintenance in the mining industry is self-evident in time losses and loss of production. In this paper, the reliability-based maintenance is examined with a different insight than before. The system goes back to the Good As New (GAN) state or too Bad As Old (BAO) maintenance state; why so, the maintenance of the system shifts to the midrange state. On the other hand, the implementation of repairs is strongly influenced by the environmental factors that are known as the “risk factors”. Therefore, an analysis requires a model that integrates two basic elements: (1) incompleteness of the maintenance effect and (2) risk factors. Thus, an extensive proportional hazard ratio model (EPHM) is used as a combination of the Proportional Hazard Model (PHM) and the Hybrid Imperfect Preventive Maintenance model (HIPM) in order to analyze these elements. In this regards, four different preventive maintenance strategies are proposed. All four strategies are time-based including constant interval or periodic (the first and second strategies) and cyclic interval (the third and fourth strategies). The proposed method is applied for a Komatsu HD785-5 dump-truck in the Songun copper mine as a case study. The PM intervals with a mean value of risk factors for the four activities to reach the 80% reliability for the first and second strategies are about 5 and 48 hours. These intervals for the third strategy are calculated as 48.36, 11.58, 10.25, and 9.035, and for the fourth strategy are 5.06, 4.078, 3.459, and 1.92.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预防性维修中的预期比例风险模型
无论是直接以费用的形式出现,还是间接以费用的形式出现,采矿业维修的目的在时间损失和生产损失上是不言而喻的。本文以不同于以往的视角对基于可靠性的维修进行了研究。系统回到“如新般好”(GAN)或“如旧般坏”(BAO)的维护状态;为什么会这样,系统的维护转向了中档状态。另一方面,维修的实施受到被称为“风险因素”的环境因素的强烈影响。因此,分析需要一个集成了两个基本要素的模型:(1)维护效果的不完整性和(2)风险因素。因此,将比例风险模型(PHM)与混合不完全预防性维修模型(HIPM)相结合,采用广义比例风险比模型(EPHM)对这些要素进行分析。在这方面,提出了四种不同的预防性维护策略。所有四种策略都是基于时间的,包括恒定间隔或周期性(第一和第二策略)和循环间隔(第三和第四策略)。以松郡铜矿的小松HD785-5自卸车为例进行了研究。对于第一种和第二种策略,四个活动达到80%可靠性的风险因素平均值的PM间隔约为5小时和48小时。第三种策略的区间分别为48.36、11.58、10.25和9.035,第四种策略的区间分别为5.06、4.078、3.459和1.92。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Mining and Environment
Journal of Mining and Environment MINING & MINERAL PROCESSING-
CiteScore
1.90
自引率
25.00%
发文量
0
期刊最新文献
Fe3O4@TiO2@V2O5 as an efficient magnetic nanoparticle for synthesis of di-indolyl oxindole derivatives Propose a viable stabilization method for slope in weak rock mass environment using numerical modelling: A case study from the cut slopes Estimation of optimum geometric configuration of mine dumps in Wardha valley coalfields in India: a case study An investigation on tailing slurry transport in Kooshk lead-zinc mine in Iran based on non-Newtonian fluid rheology: an experimental study Carnallite Flotation of Khur Biabanak Potash Complex using kimiaflot 619 as a New Collector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1