{"title":"Optimization of co-culture condition with respect to aeration and glucose to xylose ratio for bioethanol production","authors":"Shashi Kumar, G. Agarwal, T. Sreekrishnan","doi":"10.1080/00194506.2023.2190332","DOIUrl":null,"url":null,"abstract":"ABSTRACT The present study was designed to find a suitable microaerobic condition and ratio of glucose and xylose for maximum ethanol production using co-culture of Saccharomyces cerevisiae and Pichia stipitis. The maximum ethanol concentration and yield were achieved at 0.05 vvm aeration rate and 2:1 glucose/xylose ratio. The co-culture resulted in maximum ethanol concentration, ethanol yield, and volumetric productivity of 12.33 ± 0.10 g/L, 0.43 g/g, and 0.26 g/L/h, respectively. While, the monoculture of P. stipitis resulted in 8.96 ± 0.13 g/L, 0.36 g/g, and 0.19 g/L/h respectively. The fermentation carried out in microaerobic mode delivered 10.68% and 10.56% more ethanol concentration and ethanol yield respectively from glucose compared to the combination of anaerobic and microaerobic mode. Also, the glucose uptake rate increased to 0.83 g/L/h, which corresponds to an improvement of 50.16%, suggesting that the lower microaerophilic condition not only supports P. stipitis metabolism but also does S. cerevisiae to convert glucose faster in a co-culture system. Hence, co-culture cultivation in microaerobic mode would be a better condition to achieve maximum ethanol and productivity. GRAPHICAL ABSTRACT","PeriodicalId":13430,"journal":{"name":"Indian Chemical Engineer","volume":"65 1","pages":"233 - 248"},"PeriodicalIF":0.9000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Chemical Engineer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00194506.2023.2190332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT The present study was designed to find a suitable microaerobic condition and ratio of glucose and xylose for maximum ethanol production using co-culture of Saccharomyces cerevisiae and Pichia stipitis. The maximum ethanol concentration and yield were achieved at 0.05 vvm aeration rate and 2:1 glucose/xylose ratio. The co-culture resulted in maximum ethanol concentration, ethanol yield, and volumetric productivity of 12.33 ± 0.10 g/L, 0.43 g/g, and 0.26 g/L/h, respectively. While, the monoculture of P. stipitis resulted in 8.96 ± 0.13 g/L, 0.36 g/g, and 0.19 g/L/h respectively. The fermentation carried out in microaerobic mode delivered 10.68% and 10.56% more ethanol concentration and ethanol yield respectively from glucose compared to the combination of anaerobic and microaerobic mode. Also, the glucose uptake rate increased to 0.83 g/L/h, which corresponds to an improvement of 50.16%, suggesting that the lower microaerophilic condition not only supports P. stipitis metabolism but also does S. cerevisiae to convert glucose faster in a co-culture system. Hence, co-culture cultivation in microaerobic mode would be a better condition to achieve maximum ethanol and productivity. GRAPHICAL ABSTRACT