Halit Kuşku, M. Yiğit, Sevdan Yılmaz, Ümüt Yigit, Sebahattin Ergün
{"title":"Multiple exposure to thunderstorm sound in Nile tilapia (Oreochromis niloticus): physiological response and stress recovery","authors":"Halit Kuşku, M. Yiğit, Sevdan Yılmaz, Ümüt Yigit, Sebahattin Ergün","doi":"10.2478/aoas-2022-0075","DOIUrl":null,"url":null,"abstract":"Abstract The present study investigated the impacts of multiple thunderstorm-sound exposures on growth and respiratory parameters in Nile tilapia (Oreochromis niloticus) in order to evaluate the acoustic stress response. Thunderstorm-sound exposure for 3 hours triggered respiration speed with an alarm reflex and rapid elevation of opercula beat rate (OBR) and pectoral wing rate (PWR), which increased two-fold over the control with no sound treatment, and peaked (OBR, 71.33±5.86 beat/min; PWR, 75.00±3.61 beat/min) in 10 hours after initiation of sound. Thereafter, respiration rates declined over the following days and returned to near-initial levels (45.33±4.04 beat/min OBR and 43.00±1.00 beat/min PWR) by day 3, an indication that fish recovered from thunderstorm-sound stress after 3 days of exposure. However, the same reaction course was observed each time of multiple sound exposures, repeated 20 times in a row with 4-day intervals, underlining that fish could not attune to repeated thunderstorm sound. Reduced voluntary feed intake as a result of anxiety and appetite loss was recorded in fish exposed to multiple thunderstorm sound, resulting in 50% less growth compared to those without sound treatment by the end of the 80-day experimentation. Therefore, it is advisable to monitor fish behavior during the 3-day stress period after a thunderstorm event in order to prevent waste from excess feeding, that in turn may contribute environment-friendly aquaculture for the future and sustainability of the oceans.","PeriodicalId":8235,"journal":{"name":"Annals of Animal Science","volume":"23 1","pages":"449 - 459"},"PeriodicalIF":1.8000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Animal Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2478/aoas-2022-0075","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The present study investigated the impacts of multiple thunderstorm-sound exposures on growth and respiratory parameters in Nile tilapia (Oreochromis niloticus) in order to evaluate the acoustic stress response. Thunderstorm-sound exposure for 3 hours triggered respiration speed with an alarm reflex and rapid elevation of opercula beat rate (OBR) and pectoral wing rate (PWR), which increased two-fold over the control with no sound treatment, and peaked (OBR, 71.33±5.86 beat/min; PWR, 75.00±3.61 beat/min) in 10 hours after initiation of sound. Thereafter, respiration rates declined over the following days and returned to near-initial levels (45.33±4.04 beat/min OBR and 43.00±1.00 beat/min PWR) by day 3, an indication that fish recovered from thunderstorm-sound stress after 3 days of exposure. However, the same reaction course was observed each time of multiple sound exposures, repeated 20 times in a row with 4-day intervals, underlining that fish could not attune to repeated thunderstorm sound. Reduced voluntary feed intake as a result of anxiety and appetite loss was recorded in fish exposed to multiple thunderstorm sound, resulting in 50% less growth compared to those without sound treatment by the end of the 80-day experimentation. Therefore, it is advisable to monitor fish behavior during the 3-day stress period after a thunderstorm event in order to prevent waste from excess feeding, that in turn may contribute environment-friendly aquaculture for the future and sustainability of the oceans.
期刊介绍:
Annals of Animal Science accepts original papers and reviews from the different topics of animal science: genetic and farm animal breeding, the biology, physiology and reproduction of animals, animal nutrition and feedstuffs, environment, hygiene and animal production technology, quality of animal origin products, economics and the organization of animal production.