Modeling, simulation, and trade‐off analysis for multirobot, multioperator surveillance

IF 1.6 3区 工程技术 Q4 ENGINEERING, INDUSTRIAL Systems Engineering Pub Date : 2023-04-14 DOI:10.1002/sys.21685
James Humann, T. Fletcher, J. Gerdes
{"title":"Modeling, simulation, and trade‐off analysis for multirobot, multioperator surveillance","authors":"James Humann, T. Fletcher, J. Gerdes","doi":"10.1002/sys.21685","DOIUrl":null,"url":null,"abstract":"As unmanned vehicles become smaller and more autonomous, it is becoming feasible to use them in large groups with comparatively few human operators. Design and analysis of such distributed systems are complicated by the many interactions among agents and phenomena of human behavior. In particular, human susceptibility to fatigue and cognitive overload can introduce errors and uncertainty into the system. In this paper, we demonstrate how advanced computational tools can help to overcome these engineering difficulties by optimizing multirobot, multioperator surveillance systems for cost, speed, accuracy, and stealth according to diverse user preferences in multiple case studies. The tool developed is a graphical user interface that returns the optimal number and mix of diverse agent types as a function of the user's trade‐off preferences. System performance prediction relies on a multiagent simulation with submodels for human operators, fixed‐wing unmanned aerial vehicles (UAVs), quadrotor UAVs, and flapping wing UAVs combined in different numbers.","PeriodicalId":54439,"journal":{"name":"Systems Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/sys.21685","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 1

Abstract

As unmanned vehicles become smaller and more autonomous, it is becoming feasible to use them in large groups with comparatively few human operators. Design and analysis of such distributed systems are complicated by the many interactions among agents and phenomena of human behavior. In particular, human susceptibility to fatigue and cognitive overload can introduce errors and uncertainty into the system. In this paper, we demonstrate how advanced computational tools can help to overcome these engineering difficulties by optimizing multirobot, multioperator surveillance systems for cost, speed, accuracy, and stealth according to diverse user preferences in multiple case studies. The tool developed is a graphical user interface that returns the optimal number and mix of diverse agent types as a function of the user's trade‐off preferences. System performance prediction relies on a multiagent simulation with submodels for human operators, fixed‐wing unmanned aerial vehicles (UAVs), quadrotor UAVs, and flapping wing UAVs combined in different numbers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多机器人、多操作员监控的建模、仿真和权衡分析
随着无人驾驶车辆变得越来越小、越来越自主,在操作员相对较少的情况下,大规模使用它们变得越来越可行。这种分布式系统的设计和分析由于代理和人类行为现象之间的许多相互作用而变得复杂。特别是,人类对疲劳和认知超载的敏感性会给系统带来错误和不确定性。在本文中,我们在多个案例研究中展示了先进的计算工具如何通过根据不同用户偏好优化多机器人、多操作员监视系统的成本、速度、准确性和隐身性来帮助克服这些工程难题。开发的工具是一个图形用户界面,它返回不同代理类型的最佳数量和组合,作为用户权衡偏好的函数。系统性能预测依赖于多智能体仿真,其中包含不同数量的人类操作员、固定翼无人机(uav)、四旋翼无人机和扑翼无人机的子模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Systems Engineering
Systems Engineering 工程技术-工程:工业
CiteScore
5.10
自引率
20.00%
发文量
0
审稿时长
6 months
期刊介绍: Systems Engineering is a discipline whose responsibility it is to create and operate technologically enabled systems that satisfy stakeholder needs throughout their life cycle. Systems engineers reduce ambiguity by clearly defining stakeholder needs and customer requirements, they focus creativity by developing a system’s architecture and design and they manage the system’s complexity over time. Considerations taken into account by systems engineers include, among others, quality, cost and schedule, risk and opportunity under uncertainty, manufacturing and realization, performance and safety during operations, training and support, as well as disposal and recycling at the end of life. The journal welcomes original submissions in the field of Systems Engineering as defined above, but also encourages contributions that take an even broader perspective including the design and operation of systems-of-systems, the application of Systems Engineering to enterprises and complex socio-technical systems, the identification, selection and development of systems engineers as well as the evolution of systems and systems-of-systems over their entire lifecycle. Systems Engineering integrates all the disciplines and specialty groups into a coordinated team effort forming a structured development process that proceeds from concept to realization to operation. Increasingly important topics in Systems Engineering include the role of executable languages and models of systems, the concurrent use of physical and virtual prototyping, as well as the deployment of agile processes. Systems Engineering considers both the business and the technical needs of all stakeholders with the goal of providing a quality product that meets the user needs. Systems Engineering may be applied not only to products and services in the private sector but also to public infrastructures and socio-technical systems whose precise boundaries are often challenging to define.
期刊最新文献
Systematic approach to a government‐led technology roadmap for future‐ready adaptive traffic signal control systems Emergent knowledge patterns in verification artifacts On reference architectures Requirements engineering in industry 4.0: State of the art and directions to continuous requirements engineering Enhancing conceptual models with computational capabilities: A methodical approach to executable integrative modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1