Prediction of Dengue Hemorrhagic Fever Cases Based on Weather Parameters Using Back Propagation Neural Networks (Case Study in Pontianak City)

IF 0.3 Q4 EDUCATION, SCIENTIFIC DISCIPLINES Jurnal Pendidikan Fisika Indonesia-Indonesian Journal of Physics Education Pub Date : 2019-07-26 DOI:10.15294/jpfi.v15i2.19633
I. Rahayu, N. Nurhasanah, R. Adriat
{"title":"Prediction of Dengue Hemorrhagic Fever Cases Based on Weather Parameters Using Back Propagation Neural Networks (Case Study in Pontianak City)","authors":"I. Rahayu, N. Nurhasanah, R. Adriat","doi":"10.15294/jpfi.v15i2.19633","DOIUrl":null,"url":null,"abstract":"Research has been conducted by predicting cases of dengue hemorrhagic fever based on weather parameters. The data used are weather parameters in the form of air temperature data, air humidity, rainfall, duration of solar radiation and wind speed as input data and data on dengue hemorrhagic fever cases as the target data. This study aims to see the confirmation of dengue hemorrhagic parameters in Pontianak. The benefit in the field of education is that students and teachers are aware of the dangers of dengue because it can cause death. The method used is back propagation neural networks with the best network architecture in predicting cases of dengue hemorrhagic fever are [50 40 30 1] and binary sigmoid activation function, bipolar sigmoid and linear function. The activation function will determine whether the signal from the neuron input will be forwarded to other neurons and is also used to determine the output of a neuron. Network training correlation value is 0.9995 (very strong correlation) with MSE 0.0001 and network testing is 0.9325 (very strong correlation) with MSE 1.61. Determination coefficient serve as accuracy with values obtained is 0.85, which means that 85% of weather parameters can be used as input in predicting the incidence of dengue hemorrhagic fever in Pontianak City.","PeriodicalId":42020,"journal":{"name":"Jurnal Pendidikan Fisika Indonesia-Indonesian Journal of Physics Education","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Pendidikan Fisika Indonesia-Indonesian Journal of Physics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/jpfi.v15i2.19633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 1

Abstract

Research has been conducted by predicting cases of dengue hemorrhagic fever based on weather parameters. The data used are weather parameters in the form of air temperature data, air humidity, rainfall, duration of solar radiation and wind speed as input data and data on dengue hemorrhagic fever cases as the target data. This study aims to see the confirmation of dengue hemorrhagic parameters in Pontianak. The benefit in the field of education is that students and teachers are aware of the dangers of dengue because it can cause death. The method used is back propagation neural networks with the best network architecture in predicting cases of dengue hemorrhagic fever are [50 40 30 1] and binary sigmoid activation function, bipolar sigmoid and linear function. The activation function will determine whether the signal from the neuron input will be forwarded to other neurons and is also used to determine the output of a neuron. Network training correlation value is 0.9995 (very strong correlation) with MSE 0.0001 and network testing is 0.9325 (very strong correlation) with MSE 1.61. Determination coefficient serve as accuracy with values obtained is 0.85, which means that 85% of weather parameters can be used as input in predicting the incidence of dengue hemorrhagic fever in Pontianak City.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于天气参数的反向传播神经网络预测登革热出血热病例(以Pontianak市为例)
已经通过根据天气参数预测登革热出血热病例进行了研究。所使用的数据是以气温数据、空气湿度、降雨量、太阳辐射持续时间和风速为输入数据的天气参数,以及以登革热-出血热病例数据为目标数据的数据。本研究旨在确认Pontianak的登革热出血参数。教育领域的好处是,学生和教师都意识到登革热的危险,因为它会导致死亡。所使用的方法是反向传播神经网络,用于预测登革热出血热病例的最佳网络结构是[5040301]和二元乙状结肠激活函数、双极乙状结肠和线性函数。激活函数将确定来自神经元输入的信号是否将被转发到其他神经元,并且还用于确定神经元的输出。网络训练相关值与MSE 0.0001为0.9995(非常强的相关性),网络测试与MSE 1.61为0.9325(非常强相关性)。确定系数的准确度为0.85,这意味着85%的天气参数可以作为预测蓬蒂亚纳克市登革热出血热发病率的输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
33.30%
发文量
0
审稿时长
24 weeks
期刊最新文献
E-Module Implementation by Using Feature-Lesson-Based of Moodle in Physics Learning Multimedia Practices for Students of Prospective Physics Teacher The Feasibility of Guided Inquiry-Based Digital Flipbook Learning Media: Physics Module in Sensing Systems State of The Art Review: Building Computational Thinking on Science Education The Effect of Psycho Cognition Homogeneity Strategies on Students' Understanding of Physics Concepts in Static Fluid Topics Interactive Multimedia Design Based on Cognitive Conflict on Dynamic Fluid Using Adobe Animate CC 2019
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1