Affect of the Scattering Asymmetry by Structural Element of Thermal- or Environmental-Barrier Ceramics on Subsurface Radiant Overheating

IF 2.7 Q1 MATERIALS SCIENCE, CERAMICS Ceramics-Switzerland Pub Date : 2023-03-13 DOI:10.3390/ceramics6010044
V. Merzlikin, Evgeny Safonov, A. Kostyukov, S. Parshina, Anna Dokukina
{"title":"Affect of the Scattering Asymmetry by Structural Element of Thermal- or Environmental-Barrier Ceramics on Subsurface Radiant Overheating","authors":"V. Merzlikin, Evgeny Safonov, A. Kostyukov, S. Parshina, Anna Dokukina","doi":"10.3390/ceramics6010044","DOIUrl":null,"url":null,"abstract":"The problem of the formation and estimation of a thermoradiant and temperature field in ceramics Thermal- Environmental-Barrier Coatings (TBC/EBC) has been considered with complex heat transfer but under the influence of the penetrating intense radiant component. The authors proposed to analyze not only TBC but also EBC from the point of view of the optics of semitransparent scattering and absorbing media in the range of ~0.4–4 μm of external radiant action. This paradigm allows us to continue the study of ceramic fibers embedded in ceramic matrix CMCs (C/C, C/SiC, SiC/SiC) as a traditional class of opaque materials. However, at the same time, mullites, Al2O3/Al2O3 have been reviewed as a class of semitransparent elements for designing CMCs. The relevance of studying the effect of oriented fibers on the formation of thermoradiation and temperature fields in a semitransparent material was noted. Modeling the scattering asymmetry coefficient influence (scattering phase function) on the generation of the subsurface thermal radiation source was carried out. The methodology for calculating the thermoradiative field in a semitransparent medium (with relative absorption, scattering indexes, and scattering asymmetry coefficient) was used under a one-dimensional two-flux model as the first approximation for solving the radiative heat transfer equation. Calculations of temperature profiles in opaque and semitransparent ceramics were presented under heat load typical for the combustion chambers operating regime of diesel and gas turbine engines.","PeriodicalId":33263,"journal":{"name":"Ceramics-Switzerland","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics-Switzerland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ceramics6010044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of the formation and estimation of a thermoradiant and temperature field in ceramics Thermal- Environmental-Barrier Coatings (TBC/EBC) has been considered with complex heat transfer but under the influence of the penetrating intense radiant component. The authors proposed to analyze not only TBC but also EBC from the point of view of the optics of semitransparent scattering and absorbing media in the range of ~0.4–4 μm of external radiant action. This paradigm allows us to continue the study of ceramic fibers embedded in ceramic matrix CMCs (C/C, C/SiC, SiC/SiC) as a traditional class of opaque materials. However, at the same time, mullites, Al2O3/Al2O3 have been reviewed as a class of semitransparent elements for designing CMCs. The relevance of studying the effect of oriented fibers on the formation of thermoradiation and temperature fields in a semitransparent material was noted. Modeling the scattering asymmetry coefficient influence (scattering phase function) on the generation of the subsurface thermal radiation source was carried out. The methodology for calculating the thermoradiative field in a semitransparent medium (with relative absorption, scattering indexes, and scattering asymmetry coefficient) was used under a one-dimensional two-flux model as the first approximation for solving the radiative heat transfer equation. Calculations of temperature profiles in opaque and semitransparent ceramics were presented under heat load typical for the combustion chambers operating regime of diesel and gas turbine engines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热障或环境障陶瓷结构元件散射不对称性对地下辐射过热的影响
考虑了陶瓷热环境屏障涂层(TBC/EBC)中热辐射源和温度场的形成和估计问题,该问题具有复杂的传热过程,但受穿透性强辐射分量的影响。作者提出从~0.4 ~ 4 μm外辐射作用范围内的半透明散射和吸收介质的光学角度分析TBC和EBC。这种模式使我们能够继续研究嵌入陶瓷基体cmc (C/C, C/SiC, SiC/SiC)中的陶瓷纤维作为传统的不透明材料。然而,与此同时,莫来石、Al2O3/Al2O3作为一类设计cmc的半透明元素也得到了综述。指出了研究取向纤维对半透明材料中热辐射场和温度场形成的影响的相关性。模拟了散射不对称系数(散射相函数)对地下热辐射源产生的影响。采用一维双通量模型下计算半透明介质中热辐射场的方法(含相对吸收、散射指数和散射不对称系数)作为求解辐射传热方程的第一近似。给出了不透明和半透明陶瓷在柴油机和燃气轮机燃烧室工作状态下典型热负荷下的温度分布计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
7.10%
发文量
66
审稿时长
10 weeks
期刊最新文献
Non-Invasive On-Site XRF and Raman Classification and Dating of Ancient Ceramics: Application to 18th and 19th Century Meissen Porcelain (Saxony) and Comparison with Chinese Porcelain Biomechanical Behavior of Lithium-Disilicate-Modified Endocrown Restorations: A Three-Dimensional Finite Element Analysis Preparation and Characterization of Freeze-Dried β-Tricalcium Phosphate/Barium Titanate/Collagen Composite Scaffolds for Bone Tissue Engineering in Orthopedic Applications Ceramic Filters for the Efficient Removal of Azo Dyes and Pathogens in Water Bioinspired Mechanical Materials—Development of High-Toughness Ceramics through Complexation of Calcium Phosphate and Organic Polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1