Biodesulfurizing Microbes in the Petroleum Refinery Areas of Saudi Arabia

IF 0.7 Q4 MICROBIOLOGY Journal of Pure and Applied Microbiology Pub Date : 2023-09-02 DOI:10.22207/jpam.17.3.39
Abrar Ahmad, O. Baothman, M. Nadeem, Varish Ahmad
{"title":"Biodesulfurizing Microbes in the Petroleum Refinery Areas of Saudi Arabia","authors":"Abrar Ahmad, O. Baothman, M. Nadeem, Varish Ahmad","doi":"10.22207/jpam.17.3.39","DOIUrl":null,"url":null,"abstract":"Gordonia sp., Rhodococcus, Paenibaccilus, Mycobacterium and many other desulfurizing strains have shown good potential for dibenzothiophene (DBT), 4, 6-Dimethyldibenzothiophene (4-6-Dimethyl dibenzothiophene) and other organosulfur biodesulfurization. These are microbes which have 4S pathway to remove S from remaining calcitarant organosulfur compounds even after deep desulfurization. Sulfur compounds present in crude oils, diesel and petrol when combust in engines they emerge out in the form of elemental Sulfur, which causes environmental and health problems. Therefore, efforts are going to remove this Sulfur compounds by Hydrodesulfurization (HDS) treatment. Some organosulfur compounds remain there even after HDS, which can only remove by highly evolved microbes residing nearby petroleum-contaminated areas in refineries zone. Nature has such adopted and evolved microbes for the bioremediation of such toxic substances. Here we have isolated and characterized highly evolved and adopted Biodesulfurizing microbes present around oil refineries in Kingdom of Saudi Arabia and prepare the culture collection of such highly evolved and adopted biodesulfurization microorganisms for future application of applied Industrial petroleum refineries, which can reduce the Sulfur load in the petroleum products. The several (10 different types) microbes have been reported in these soils to grow in sulfur compounds. Out of these microbes one microbe desulfurizes by 4S pathway. It was identified to be Rhodococcus erythropolis type named as Rhodococcus erythroplis KAU10. They show good potential for various organosulfur compounds (DBT, 2,4,6-Trimethyl Benzothiophene, Benzothiophene, Dibenzyl sulfide, Benzonaphthothiophene, Dibenzothiophene sulfone, along with crude oil and Petrol and Diesel. Isolated strain Rhodococcus erythroplis KAU10 have good potential for Biodesulfurization.","PeriodicalId":16968,"journal":{"name":"Journal of Pure and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22207/jpam.17.3.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gordonia sp., Rhodococcus, Paenibaccilus, Mycobacterium and many other desulfurizing strains have shown good potential for dibenzothiophene (DBT), 4, 6-Dimethyldibenzothiophene (4-6-Dimethyl dibenzothiophene) and other organosulfur biodesulfurization. These are microbes which have 4S pathway to remove S from remaining calcitarant organosulfur compounds even after deep desulfurization. Sulfur compounds present in crude oils, diesel and petrol when combust in engines they emerge out in the form of elemental Sulfur, which causes environmental and health problems. Therefore, efforts are going to remove this Sulfur compounds by Hydrodesulfurization (HDS) treatment. Some organosulfur compounds remain there even after HDS, which can only remove by highly evolved microbes residing nearby petroleum-contaminated areas in refineries zone. Nature has such adopted and evolved microbes for the bioremediation of such toxic substances. Here we have isolated and characterized highly evolved and adopted Biodesulfurizing microbes present around oil refineries in Kingdom of Saudi Arabia and prepare the culture collection of such highly evolved and adopted biodesulfurization microorganisms for future application of applied Industrial petroleum refineries, which can reduce the Sulfur load in the petroleum products. The several (10 different types) microbes have been reported in these soils to grow in sulfur compounds. Out of these microbes one microbe desulfurizes by 4S pathway. It was identified to be Rhodococcus erythropolis type named as Rhodococcus erythroplis KAU10. They show good potential for various organosulfur compounds (DBT, 2,4,6-Trimethyl Benzothiophene, Benzothiophene, Dibenzyl sulfide, Benzonaphthothiophene, Dibenzothiophene sulfone, along with crude oil and Petrol and Diesel. Isolated strain Rhodococcus erythroplis KAU10 have good potential for Biodesulfurization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
沙特阿拉伯炼油地区的生物脱硫微生物
Gordonia sp.、Rhodococcus、Paenibaccilus、分枝杆菌和许多其他脱硫菌株已经显示出良好的二苯并噻吩(DBT)、4,6-二甲基二苯并噻(4-6-二甲基二苯并噻吩)和其他有机硫生物脱硫潜力。这些微生物具有4S途径,即使在深度脱硫后也能从残留的抗钙有机硫化合物中去除S。原油、柴油和汽油中存在的含硫化合物在发动机中燃烧时以元素硫的形式出现,这会导致环境和健康问题。因此,正努力通过加氢脱硫(HDS)处理来去除这种含硫化合物。一些有机硫化合物即使在加氢脱硫后仍然存在,这些化合物只能由炼油厂附近石油污染区的高度进化的微生物去除。大自然已经采用并进化出微生物来对这些有毒物质进行生物修复。在这里,我们分离并表征了沙特阿拉伯王国炼油厂周围存在的高度进化和采用的生物脱硫微生物,并准备了这种高度进化和使用的生物脱硫细菌的培养物,以供未来应用于工业炼油厂,从而降低石油产品中的硫负荷。据报道,在这些土壤中,有几种(10种不同类型)微生物生长在含硫化合物中。在这些微生物中,有一种微生物通过4S途径脱硫。经鉴定为红球菌型,命名为红球菌KAU10。它们对各种有机硫化合物(DBT、2,4,6-三甲基苯并噻吩、苯并噻吩,二苄基硫醚、苯并萘并噻吩、二苯并噻吩砜,以及原油、汽油和柴油都显示出良好的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Pure and Applied Microbiology
Journal of Pure and Applied Microbiology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
2.00
自引率
0.00%
发文量
266
审稿时长
11 months
期刊介绍: Journal of Pure and Applied Microbiology (JPAM) is a peer-reviewed, open access international journal of microbiology aims to advance and disseminate research among scientists, academics, clinicians and microbiologists around the world. JPAM publishes high-quality research in all aspects of microbiology in both online and print form on quarterly basis.
期刊最新文献
Screening of Group B Streptococcal and Candida Infections in Antenatal Women Visiting a Tertiary Care Hospital and the Neonatal Outcome The C. auris Epidemic: Understanding its Impact on ICU Patients Lactic Acid Bacteria as an Exopolysaccharides (EPS) Producing Starter from Pakoba Fruit (Syzygium sp.), Endemic Species at Minahasa, North Sulawesi GC-MS Characterization of Eupatorium odoratum (L.) Leaves Essential Oil and Evaluation of In vitro Antimicrobial and Antioxidant Activity An Account of Hygienic Practices and Street Food Safety Around the Medical Colleges of Kolkata, India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1