Analyzing Job Analysis Data Using Mixture Rasch Models

IF 1 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY International Journal of Testing Pub Date : 2018-09-14 DOI:10.1080/15305058.2018.1481853
Adam E. Wyse
{"title":"Analyzing Job Analysis Data Using Mixture Rasch Models","authors":"Adam E. Wyse","doi":"10.1080/15305058.2018.1481853","DOIUrl":null,"url":null,"abstract":"An important piece of validity evidence to support the use of credentialing exams comes from performing a job analysis of the profession. One common job analysis method is the task inventory method, where people working in the field are surveyed using rating scales about the tasks thought necessary to safely and competently perform the job. This article describes how mixture Rasch models can be used to analyze these data, and how results from these analyses can help to identify whether different groups of people may be responding to job tasks differently. Three examples from different credentialing programs illustrate scenarios that can be found when applying mixture Rasch models to job analysis data. Discussion of what these results may imply for the development of credentialing exams and other analyses of job analysis data is provided.","PeriodicalId":46615,"journal":{"name":"International Journal of Testing","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15305058.2018.1481853","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15305058.2018.1481853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

An important piece of validity evidence to support the use of credentialing exams comes from performing a job analysis of the profession. One common job analysis method is the task inventory method, where people working in the field are surveyed using rating scales about the tasks thought necessary to safely and competently perform the job. This article describes how mixture Rasch models can be used to analyze these data, and how results from these analyses can help to identify whether different groups of people may be responding to job tasks differently. Three examples from different credentialing programs illustrate scenarios that can be found when applying mixture Rasch models to job analysis data. Discussion of what these results may imply for the development of credentialing exams and other analyses of job analysis data is provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用混合Rasch模型分析工作分析数据
支持使用资格考试的一项重要有效性证据来自对该行业的工作分析。一种常见的工作分析方法是任务清单法,即使用评分量表对现场工作人员进行调查,了解他们认为安全、胜任工作所需的任务。本文描述了如何使用混合Rasch模型来分析这些数据,以及这些分析的结果如何有助于确定不同人群对工作任务的反应是否不同。来自不同认证程序的三个例子说明了在将混合Rasch模型应用于工作分析数据时可以找到的场景。讨论了这些结果对资格考试的发展和对工作分析数据的其他分析可能意味着什么。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Testing
International Journal of Testing SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
3.60
自引率
11.80%
发文量
13
期刊最新文献
Combining Mokken Scale Analysis with and rasch measurement theory to explore differences in measurement quality between subgroups Examining the construct validity of the MIDUS version of the Multidimensional Personality Questionnaire (MPQ) Where nonresponse is at its loudest: Cross-country and individual differences in item nonresponse across the PISA 2018 student questionnaire The choice between cognitive diagnosis and item response theory: A case study from medical education Beyond group comparisons: Accounting for intersectional sources of bias in international survey measures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1