Á. Barsi, Z. Kugler, A. Juhász, G. Szabó, C. Batini, H. Abdulmuttalib, Guoman Huang, Huanfeng Shen
{"title":"Remote sensing data quality model: from data sources to lifecycle phases","authors":"Á. Barsi, Z. Kugler, A. Juhász, G. Szabó, C. Batini, H. Abdulmuttalib, Guoman Huang, Huanfeng Shen","doi":"10.1080/19479832.2019.1625977","DOIUrl":null,"url":null,"abstract":"ABSTRACT The importance of data quality assessment has significantly increased with the boom of information technology and the growing demand for remote sensing (RS) data. The Remote Sensing Data Quality Working Group of the International Society for Photogrammetry and Remote Sensing aimed to conduct an investigation on the principles of data quality. Literature review revealed that most publications introduce data quality models for application specific processing chains and quality schemes are built case by case with particular domain indicators only. Yet no general concept independent from applications has been developed so far. This paper focuses on the formulation of a RS quality concept adopted from information technology domain describing a triangular RS data quality scheme that relates data sources, quality dimensions and lifecycle phases. Following the introduction it provides examples of international standards and fundamentals of theoretic quality modelling. After a short overview on platforms/sensors, definitions of different quality dimensions are presented with their metrics organised in clusters (like resolution or accuracy). The main achievement of the paper relates lifecycle phases to different quality dimensions of high relevance. The objective is not only to address experts of RS but to raise awareness of uncertainty for the general RS user community.","PeriodicalId":46012,"journal":{"name":"International Journal of Image and Data Fusion","volume":"10 1","pages":"280 - 299"},"PeriodicalIF":1.8000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19479832.2019.1625977","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Data Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19479832.2019.1625977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 16
Abstract
ABSTRACT The importance of data quality assessment has significantly increased with the boom of information technology and the growing demand for remote sensing (RS) data. The Remote Sensing Data Quality Working Group of the International Society for Photogrammetry and Remote Sensing aimed to conduct an investigation on the principles of data quality. Literature review revealed that most publications introduce data quality models for application specific processing chains and quality schemes are built case by case with particular domain indicators only. Yet no general concept independent from applications has been developed so far. This paper focuses on the formulation of a RS quality concept adopted from information technology domain describing a triangular RS data quality scheme that relates data sources, quality dimensions and lifecycle phases. Following the introduction it provides examples of international standards and fundamentals of theoretic quality modelling. After a short overview on platforms/sensors, definitions of different quality dimensions are presented with their metrics organised in clusters (like resolution or accuracy). The main achievement of the paper relates lifecycle phases to different quality dimensions of high relevance. The objective is not only to address experts of RS but to raise awareness of uncertainty for the general RS user community.
期刊介绍:
International Journal of Image and Data Fusion provides a single source of information for all aspects of image and data fusion methodologies, developments, techniques and applications. Image and data fusion techniques are important for combining the many sources of satellite, airborne and ground based imaging systems, and integrating these with other related data sets for enhanced information extraction and decision making. Image and data fusion aims at the integration of multi-sensor, multi-temporal, multi-resolution and multi-platform image data, together with geospatial data, GIS, in-situ, and other statistical data sets for improved information extraction, as well as to increase the reliability of the information. This leads to more accurate information that provides for robust operational performance, i.e. increased confidence, reduced ambiguity and improved classification enabling evidence based management. The journal welcomes original research papers, review papers, shorter letters, technical articles, book reviews and conference reports in all areas of image and data fusion including, but not limited to, the following aspects and topics: • Automatic registration/geometric aspects of fusing images with different spatial, spectral, temporal resolutions; phase information; or acquired in different modes • Pixel, feature and decision level fusion algorithms and methodologies • Data Assimilation: fusing data with models • Multi-source classification and information extraction • Integration of satellite, airborne and terrestrial sensor systems • Fusing temporal data sets for change detection studies (e.g. for Land Cover/Land Use Change studies) • Image and data mining from multi-platform, multi-source, multi-scale, multi-temporal data sets (e.g. geometric information, topological information, statistical information, etc.).