{"title":"Two stochastic algorithms for solving elastostatics problems governed by the Lamé equation","authors":"A. Kireeva, Ivan Aksyuk, K. Sabelfeld","doi":"10.1515/mcma-2023-2008","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we construct stochastic simulation algorithms for solving an elastostatics problem governed by the Lamé equation. Two different stochastic simulation methods are suggested: (1) a method based on a random walk on spheres, which is iteratively applied to anisotropic diffusion equations that are related through the mixed second-order derivatives (this method is meshless and can be applied to boundary value problems for complicated domains); (2) a randomized algorithm for solving large systems of linear algebraic equations that is the core of this method. It needs a mesh formation, but even for very fine grids, the algorithm shows a high efficiency. Both methods are scalable and can be easily parallelized.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"29 1","pages":"143 - 160"},"PeriodicalIF":0.8000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2023-2008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract In this paper, we construct stochastic simulation algorithms for solving an elastostatics problem governed by the Lamé equation. Two different stochastic simulation methods are suggested: (1) a method based on a random walk on spheres, which is iteratively applied to anisotropic diffusion equations that are related through the mixed second-order derivatives (this method is meshless and can be applied to boundary value problems for complicated domains); (2) a randomized algorithm for solving large systems of linear algebraic equations that is the core of this method. It needs a mesh formation, but even for very fine grids, the algorithm shows a high efficiency. Both methods are scalable and can be easily parallelized.