T. N. Rostovshchikova, M. I. Shilina, S. A. Gurevich, D. A. Yavsin, G. B. Veselov, A. A. Vedyagin
{"title":"New Approaches to the Synthesis of Ultralow-Palladium Automotive Emission Control Catalysts","authors":"T. N. Rostovshchikova, M. I. Shilina, S. A. Gurevich, D. A. Yavsin, G. B. Veselov, A. A. Vedyagin","doi":"10.1134/S001250162260019X","DOIUrl":null,"url":null,"abstract":"<p>Laser electrodispersion has been used as an alternative to the chemical synthesis of palladium-containing catalysts. The thus produced catalysts supported on alumina and HZSM-5 zeolite have high catalytic activity and stability at ultralow palladium content (0.03 wt %) in a model reaction of CO oxidation under conditions of prompt thermal aging. According to X-ray photoelectron spectroscopy and transmission electron microscopy data, palladium in the catalyst samples predominantly occurs in the Pd<sup>0</sup> state as fine particles about 2.0 nm in size, which almost completely cover the support surface. The textural characteristics of both supports are retained after the deposition of palladium. The modification of zeolite with palladium increases the adsorption capacity for hydrocarbons, which gives rise to a sorption effect in the temperature dependences of the CO conversion. The palladium-containing alumina-based catalyst demonstrated the best stability during heat treatment up to 1000°C.</p>","PeriodicalId":532,"journal":{"name":"Doklady Physical Chemistry","volume":"506 1","pages":"123 - 130"},"PeriodicalIF":1.1000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Physical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S001250162260019X","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Laser electrodispersion has been used as an alternative to the chemical synthesis of palladium-containing catalysts. The thus produced catalysts supported on alumina and HZSM-5 zeolite have high catalytic activity and stability at ultralow palladium content (0.03 wt %) in a model reaction of CO oxidation under conditions of prompt thermal aging. According to X-ray photoelectron spectroscopy and transmission electron microscopy data, palladium in the catalyst samples predominantly occurs in the Pd0 state as fine particles about 2.0 nm in size, which almost completely cover the support surface. The textural characteristics of both supports are retained after the deposition of palladium. The modification of zeolite with palladium increases the adsorption capacity for hydrocarbons, which gives rise to a sorption effect in the temperature dependences of the CO conversion. The palladium-containing alumina-based catalyst demonstrated the best stability during heat treatment up to 1000°C.
期刊介绍:
Doklady Physical Chemistry is a monthly journal containing English translations of current Russian research in physical chemistry from the Physical Chemistry sections of the Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences). The journal publishes the most significant new research in physical chemistry being done in Russia, thus ensuring its scientific priority. Doklady Physical Chemistry presents short preliminary accounts of the application of the state-of-the-art physical chemistry ideas and methods to the study of organic and inorganic compounds and macromolecules; polymeric, inorganic and composite materials as well as corresponding processes. The journal is intended for scientists in all fields of chemistry and in interdisciplinary sciences.