Study on the influence of spindle vibration on the surface roughness of ultra-precision fly cutting

J. Xi, Bin Li, D. Ren, Zexiang Zhao, Huiying Zhao
{"title":"Study on the influence of spindle vibration on the surface roughness of ultra-precision fly cutting","authors":"J. Xi, Bin Li, D. Ren, Zexiang Zhao, Huiying Zhao","doi":"10.1504/ijnm.2020.10028305","DOIUrl":null,"url":null,"abstract":"Spindle vibration is a key factor influencing the quality of the processed surfaces during ultra-precision fly cutting. An extremely tiny vibration will directly influence the quality of the surface at the nanoscale. Therefore, in this study, a mathematical model of aerostatic spindle vibration under pulsed excitation was established by analysing the characteristic cutting path of a fly cutter head and the state of the spindle under interrupted cutting force and then, the axial and radial of the aerostatic spindle to pulses during periodically interrupted fly cutting were calculated using a Fourier series. Under the periodic processing mode of high-speed fly cutting, a simulation and experimental analysis on the spindle vibration were conducted. The experimental results show that the cutting force and spindle speed are major factors influencing surface roughness. According to the simulation and experimental analysis, reliable theoretical guidance is provided for the improvement and prediction of surface quality of an ultra-precision fly cutting.","PeriodicalId":14170,"journal":{"name":"International Journal of Nanomanufacturing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijnm.2020.10028305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Spindle vibration is a key factor influencing the quality of the processed surfaces during ultra-precision fly cutting. An extremely tiny vibration will directly influence the quality of the surface at the nanoscale. Therefore, in this study, a mathematical model of aerostatic spindle vibration under pulsed excitation was established by analysing the characteristic cutting path of a fly cutter head and the state of the spindle under interrupted cutting force and then, the axial and radial of the aerostatic spindle to pulses during periodically interrupted fly cutting were calculated using a Fourier series. Under the periodic processing mode of high-speed fly cutting, a simulation and experimental analysis on the spindle vibration were conducted. The experimental results show that the cutting force and spindle speed are major factors influencing surface roughness. According to the simulation and experimental analysis, reliable theoretical guidance is provided for the improvement and prediction of surface quality of an ultra-precision fly cutting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主轴振动对超精密飞切表面粗糙度影响的研究
在超精密飞切过程中,主轴振动是影响加工表面质量的关键因素。极小的振动将直接影响纳米级表面的质量。因此,在本研究中,通过分析飞切刀头的特征切削路径和主轴在中断切削力下的状态,建立了脉冲激励下空气静压主轴振动的数学模型,然后使用傅立叶级数计算了周期性中断飞切过程中空气静压主轴对脉冲的轴向和径向振动。在高速飞切周期加工模式下,对主轴振动进行了仿真和实验分析。实验结果表明,切削力和主轴转速是影响表面粗糙度的主要因素。通过仿真和实验分析,为超精密飞切表面质量的改善和预测提供了可靠的理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Nanomanufacturing
International Journal of Nanomanufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
0.60
自引率
0.00%
发文量
0
期刊最新文献
Study on the effect of self-heating effect of bulk acoustic wave filter on the interpolation loss in the band Design and simulation of LDO circuit Research on non-contact ultrasonic vibration assisted rotating electrical discharge machining (EDM) machine tool Influence of rake angle and nose radius on optical silicon nanomachining feed rate and surface quality: a modelling, prediction and optimisation study Construction C/g-C3N4 with synergistic performance toward high photocatalytic performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1