In-situ experiment research on environmental vibration transmission characteristics of air-rail combined airport

IF 0.6 Q4 ENGINEERING, MECHANICAL Journal of Measurements in Engineering Pub Date : 2023-02-06 DOI:10.21595/jme.2023.23062
Zaixin Wu, Feng Dai, Jizhong Yang
{"title":"In-situ experiment research on environmental vibration transmission characteristics of air-rail combined airport","authors":"Zaixin Wu, Feng Dai, Jizhong Yang","doi":"10.21595/jme.2023.23062","DOIUrl":null,"url":null,"abstract":"The rail transit and civil aviation are the important components of the comprehensive transportation system. The development of the air-rail combined transport is an important effective way for China to become a country with strong transportation network. The transportation intersection form of railway under-passing airport transportation hub gradually becomes popular, thus the environmental vibration due to the under-passing railway cannot be ignored. In this paper, a large-scale integrated transportation hub construction project was taken as an example to analyze the transmission rule of environmental vibration due to the high-speed railway at the speed of 350 km/h under-passing airport in terms of the time domain and frequency domain by means of the on-site in-situ wheel-drop test. The research results show that the vertical vibration response of the ground surface along the normal direction of the railway is greater than those of the other two directions within 40 m from the centerline of the track. A vibration amplification zone appears within 5-40 m. The longitudinal vibration response of the ground surface is greater than those of the other two directions within 40-70 m. The local vibration amplification zones appear within 5-20 m and 30-60 m. The lateral vibration level of the ground surface along the normal direction of the railway increase gradually, but attenuates at the distance of 40 m and 10 m with the maximum attenuation rate of 0.67. The vertical vibration level amplifies at the distance of 60 m. The longitudinal vibration level attenuates at the distance of 20 m with the maximum attenuation rate of 0.3, but amplifies at the distance of 40 m with the maximum amplification rate of 1.8.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Measurements in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/jme.2023.23062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

The rail transit and civil aviation are the important components of the comprehensive transportation system. The development of the air-rail combined transport is an important effective way for China to become a country with strong transportation network. The transportation intersection form of railway under-passing airport transportation hub gradually becomes popular, thus the environmental vibration due to the under-passing railway cannot be ignored. In this paper, a large-scale integrated transportation hub construction project was taken as an example to analyze the transmission rule of environmental vibration due to the high-speed railway at the speed of 350 km/h under-passing airport in terms of the time domain and frequency domain by means of the on-site in-situ wheel-drop test. The research results show that the vertical vibration response of the ground surface along the normal direction of the railway is greater than those of the other two directions within 40 m from the centerline of the track. A vibration amplification zone appears within 5-40 m. The longitudinal vibration response of the ground surface is greater than those of the other two directions within 40-70 m. The local vibration amplification zones appear within 5-20 m and 30-60 m. The lateral vibration level of the ground surface along the normal direction of the railway increase gradually, but attenuates at the distance of 40 m and 10 m with the maximum attenuation rate of 0.67. The vertical vibration level amplifies at the distance of 60 m. The longitudinal vibration level attenuates at the distance of 20 m with the maximum attenuation rate of 0.3, but amplifies at the distance of 40 m with the maximum amplification rate of 1.8.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空铁联合机场环境振动传递特性的现场试验研究
轨道交通和民航是综合交通系统的重要组成部分。发展空铁联运是我国成为交通网络强国的重要有效途径。铁路下穿机场交通枢纽的交通交汇形式逐渐流行起来,由此产生的环境振动不容忽视。本文以某大型综合交通枢纽建设项目为例,通过现场车轮跌落试验,从时域和频域两个方面分析了时速350公里的高速铁路在经过机场时环境振动的传递规律。研究结果表明,在距离轨道中心线40 m范围内,沿铁路法线方向的地表垂直振动响应大于其他两个方向。振动放大区出现在5-40m范围内。地面的纵向振动响应在40-70m范围内大于其他两个方向的纵向振动反应。局部振动放大区出现在5-20m和30-60m范围内。地面沿铁路法线方向的横向振动水平逐渐增加,但在40m和10m处衰减,最大衰减率为0.67。垂直振动级在60m处放大。纵向振动级在20m处衰减,最大衰减率为0.3,但在40m处放大,最大放大率为1.8。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Measurements in Engineering
Journal of Measurements in Engineering ENGINEERING, MECHANICAL-
CiteScore
2.00
自引率
6.20%
发文量
16
审稿时长
16 weeks
期刊最新文献
A train F-TR lock anti-lifting detection method based on improved BP neural network YOLOv3-MSSA based hot spot defect detection for photovoltaic power stations Displacement analysis and numerical simulation of pile-anchor retaining structure in deep foundation pit Static transmission error measurement of various gear-shaft systems by finite element analysis Test and application of movable steel barrier with grade SB light composite corrugated beam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1