Z. Barhoumi, A. Atia, Amjad Hussain, Mariem Maatallah, Ali Alalmaie, Khalil Ibrahim Alaskri, Abdurahman Mohaya Assiri
{"title":"Effects of salinity and iron deficiency on growth and physiological attributes of Avicennia marina (Forssk.) Vierh","authors":"Z. Barhoumi, A. Atia, Amjad Hussain, Mariem Maatallah, Ali Alalmaie, Khalil Ibrahim Alaskri, Abdurahman Mohaya Assiri","doi":"10.1080/03650340.2023.2173742","DOIUrl":null,"url":null,"abstract":"ABSTRACT The grey mangrove, Avicennia marina, grows in coastal zones in which salinity is frequently associated with iron deficiency. Its response to these combined stresses has not yet explored. The current study aims to assess the physiological and biochemical effects of iron deficiency (ID), salt stress (SS) and their combination (ID + SS) on A. marina seedlings. Iron deficiency reduced growth at non-saline treated plants by 27% while its deleterious effect was mitigated by the supply of 600 mM NaCl, mainly through the increase of photosynthetic pigment contents, iron accumulation in leaves, and intrinsic water use efficiency (iWUE), and the maintain of iron use efficiency (FeUE). Iron deficiency restricted iron accumulation in leaves (31%), iron absorption efficiency (FeAE) (38%), photosynthetic activity and pigment contents, and enhanced FeUE (48%) at saline treated plants. Otherwise, salinity enhanced growth (47%), root volume (20%), Fe accumulation in leaves (8%), and pigment contents at Fe-deficient plants. However, it reduced their FeAE (18%), transpiration rate (77%) and stomatal conductance (86%). Equally, it increased Na and Cl accumulation, the net photosynthetic assimilation rate and iWUE at Fe-deficient. Interestingly, the combined stresses had no additive effects and stressed plants (ID +SS) had comparable biomass to that of the control.","PeriodicalId":8154,"journal":{"name":"Archives of Agronomy and Soil Science","volume":"69 1","pages":"2753 - 2766"},"PeriodicalIF":2.3000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Agronomy and Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/03650340.2023.2173742","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT The grey mangrove, Avicennia marina, grows in coastal zones in which salinity is frequently associated with iron deficiency. Its response to these combined stresses has not yet explored. The current study aims to assess the physiological and biochemical effects of iron deficiency (ID), salt stress (SS) and their combination (ID + SS) on A. marina seedlings. Iron deficiency reduced growth at non-saline treated plants by 27% while its deleterious effect was mitigated by the supply of 600 mM NaCl, mainly through the increase of photosynthetic pigment contents, iron accumulation in leaves, and intrinsic water use efficiency (iWUE), and the maintain of iron use efficiency (FeUE). Iron deficiency restricted iron accumulation in leaves (31%), iron absorption efficiency (FeAE) (38%), photosynthetic activity and pigment contents, and enhanced FeUE (48%) at saline treated plants. Otherwise, salinity enhanced growth (47%), root volume (20%), Fe accumulation in leaves (8%), and pigment contents at Fe-deficient plants. However, it reduced their FeAE (18%), transpiration rate (77%) and stomatal conductance (86%). Equally, it increased Na and Cl accumulation, the net photosynthetic assimilation rate and iWUE at Fe-deficient. Interestingly, the combined stresses had no additive effects and stressed plants (ID +SS) had comparable biomass to that of the control.
期刊介绍:
rchives of Agronomy and Soil Science is a well-established journal that has been in publication for over fifty years. The Journal publishes papers over the entire range of agronomy and soil science. Manuscripts involved in developing and testing hypotheses to understand casual relationships in the following areas:
plant nutrition
fertilizers
manure
soil tillage
soil biotechnology and ecophysiology
amelioration
irrigation and drainage
plant production on arable and grass land
agroclimatology
landscape formation and environmental management in rural regions
management of natural and created wetland ecosystems
bio-geochemical processes
soil-plant-microbe interactions and rhizosphere processes
soil morphology, classification, monitoring, heterogeneity and scales
reuse of waste waters and biosolids of agri-industrial origin in soil are especially encouraged.
As well as original contributions, the Journal also publishes current reviews.