Connecting flying backhauls of unmanned aerial vehicles to enhance vehicular networks with fixed 5G NR infrastructure

IF 2.1 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IET Smart Cities Pub Date : 2022-09-15 DOI:10.1049/smc2.12034
Dalia Popescu, Philippe Jacquet, Bernard Mans
{"title":"Connecting flying backhauls of unmanned aerial vehicles to enhance vehicular networks with fixed 5G NR infrastructure","authors":"Dalia Popescu,&nbsp;Philippe Jacquet,&nbsp;Bernard Mans","doi":"10.1049/smc2.12034","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates moving networks of Unmanned Aerial Vehicles to extend connectivity and guarantee data rates in the 5G by analysing possible hovering locations based on limitations such as flight time and coverage. The authors provide analytic bounds on the requirements in terms of connectivity extension for vehicular networks served by fixed Enhanced Mobile BroadBand infrastructure, where both vehicular networks and infrastructures are modelled using stochastic and fractal geometry as a model for urban environment. The authors prove that assuming <i>n</i> mobile nodes (distributed according to a hyperfractal distribution of dimension <i>d</i><sub><i>F</i></sub>) and an average of <i>ρ</i> Next Generation NodeB (gNBs), distributed like a hyperfractal of dimension <i>d</i><sub><i>r</i></sub> if <i>ρ</i> = <i>n</i><sup><i>θ</i></sup> with <i>θ</i> &gt; <i>d</i><sub><i>r</i></sub>/4 and letting <i>n</i> tending to infinity (to reflect megalopolis cities), then the average fraction of mobile nodes not covered by a gNB tends to zero like <math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mfenced>\n <msup>\n <mi>n</mi>\n <mrow>\n <mo>−</mo>\n <mfrac>\n <mfenced>\n <mrow>\n <msub>\n <mi>d</mi>\n <mi>F</mi>\n </msub>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </mfenced>\n <msub>\n <mi>d</mi>\n <mi>r</mi>\n </msub>\n </mfrac>\n <mfenced>\n <mrow>\n <mn>2</mn>\n <mi>θ</mi>\n <mo>−</mo>\n <mfrac>\n <msub>\n <mi>d</mi>\n <mi>r</mi>\n </msub>\n <mn>2</mn>\n </mfrac>\n </mrow>\n </mfenced>\n </mrow>\n </msup>\n </mfenced>\n </mrow>\n <annotation> $O\\left({n}^{-\\frac{\\left({d}_{F}-2\\right)}{{d}_{r}}\\left(2\\theta -\\frac{{d}_{r}}{2}\\right)}\\right)$</annotation>\n </semantics></math>. Interestingly, the authors prove that the average number of drones, needed to connect each mobile node not covered by gNBs, is comparable to the number of isolated mobile nodes. The authors complete the characterisation by proving that when <i>θ</i> &lt; <i>d</i><sub><i>r</i></sub>/4 the proportion of covered mobile nodes tends to zero. The authors offer insights on the placement of the ‘garage of drones’, the home location of these nomadic infrastructure nodes, to minimise the ‘flight-to-coverage time’. The authors provide a fast procedure to select the relays that will be garages (and store drones) in order to minimise the number of garages and minimise the delay. The authors’ analytical results are confirmed using simulations in Matlab.</p>","PeriodicalId":34740,"journal":{"name":"IET Smart Cities","volume":"4 4","pages":"239-254"},"PeriodicalIF":2.1000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/smc2.12034","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Cities","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/smc2.12034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

This paper investigates moving networks of Unmanned Aerial Vehicles to extend connectivity and guarantee data rates in the 5G by analysing possible hovering locations based on limitations such as flight time and coverage. The authors provide analytic bounds on the requirements in terms of connectivity extension for vehicular networks served by fixed Enhanced Mobile BroadBand infrastructure, where both vehicular networks and infrastructures are modelled using stochastic and fractal geometry as a model for urban environment. The authors prove that assuming n mobile nodes (distributed according to a hyperfractal distribution of dimension dF) and an average of ρ Next Generation NodeB (gNBs), distributed like a hyperfractal of dimension dr if ρ = nθ with θ > dr/4 and letting n tending to infinity (to reflect megalopolis cities), then the average fraction of mobile nodes not covered by a gNB tends to zero like O n d F 2 d r 2 θ d r 2 $O\left({n}^{-\frac{\left({d}_{F}-2\right)}{{d}_{r}}\left(2\theta -\frac{{d}_{r}}{2}\right)}\right)$ . Interestingly, the authors prove that the average number of drones, needed to connect each mobile node not covered by gNBs, is comparable to the number of isolated mobile nodes. The authors complete the characterisation by proving that when θ < dr/4 the proportion of covered mobile nodes tends to zero. The authors offer insights on the placement of the ‘garage of drones’, the home location of these nomadic infrastructure nodes, to minimise the ‘flight-to-coverage time’. The authors provide a fast procedure to select the relays that will be garages (and store drones) in order to minimise the number of garages and minimise the delay. The authors’ analytical results are confirmed using simulations in Matlab.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连接无人机飞行回程,以固定5G NR基础设施增强车载网络
本文研究了无人机的移动网络,通过分析基于飞行时间和覆盖范围等限制的可能悬停位置,以扩展连接并保证5G中的数据速率。作者提供了固定增强型移动宽带基础设施服务的车辆网络连接扩展需求的分析边界,其中车辆网络和基础设施都使用随机和分形几何模型作为城市环境模型。证明了假设n个移动节点(按dF维数的超分形分布分布)和ρ下一代节点(gnb)的平均值,如果ρ = nθ与θ &gt分布为dr维数的超分形;Dr /4,让n趋于无穷大(反映大都市),则未被gNB覆盖的移动节点的平均比例趋向于0,如O n−d F−2 d r 2 θ−d r 2 $O\left({n}^{-\frac{\left({d}_{F}-2\right)}{{d}_{r}}\left(2\theta -\frac{{d}_{r}}{2}\right)}\right)$。有趣的是,作者证明,连接每个未被gnb覆盖的移动节点所需的无人机的平均数量与孤立的移动节点的数量相当。作者通过证明当θ &lt;Dr /4,覆盖移动节点的比例趋于零。作者提供了关于“无人机车库”的位置的见解,这些游牧基础设施节点的所在地,以最大限度地减少“飞行到覆盖时间”。作者提供了一个快速的程序来选择将成为车库(和存储无人机)的继电器,以尽量减少车库的数量和尽量减少延迟。通过Matlab仿真验证了作者的分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Smart Cities
IET Smart Cities Social Sciences-Urban Studies
CiteScore
7.70
自引率
3.20%
发文量
25
审稿时长
21 weeks
期刊最新文献
Guest Editorial: Smart cities 2.0: How Artificial Intelligence and Internet of Things are transforming urban living Smart city fire surveillance: A deep state-space model with intelligent agents Securing smart cities through machine learning: A honeypot-driven approach to attack detection in Internet of Things ecosystems Smart resilience through IoT-enabled natural disaster management: A COVID-19 response in São Paulo state Optimising air quality prediction in smart cities with hybrid particle swarm optimization-long-short term memory-recurrent neural network model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1