Development of Alginate-Montmorillonite-Starch with Encapsulated Trichoderma harzianum and Evaluation of Conidia Shelf Life

Q2 Agricultural and Biological Sciences International Journal of Agriculture and Biology Pub Date : 2021-07-01 DOI:10.17957/ijab/15.1812
Fariz Adzmi
{"title":"Development of Alginate-Montmorillonite-Starch with Encapsulated Trichoderma harzianum and Evaluation of Conidia Shelf Life","authors":"Fariz Adzmi","doi":"10.17957/ijab/15.1812","DOIUrl":null,"url":null,"abstract":"Biological control agents, such as Trichoderma harzianum, are widely used in sustainable agriculture. However, commercialisation and mass production of biocontrol products have remained a challenge, especially in viability and efficiency in field application. The encapsulation method has emerged as a sophisticated technique to develop the formulation of T. harzianum. Hence, encapsulation through extrusion was used to prepare T. harzianum beads. The physical characteristics comprising weight, diameter, and swelling ability of the beads were significantly improved when the starch percentage was increased. Alginate-montmorillonite-starch (10%) revealed the lowest shrinkage and the highest swelling ability. The interaction within the functional groups of alginate, montmorillonite, and starch was confirmed by the Fourier-transform infrared spectroscopic (FTIR) study. Furthermore, scanning electron microscopic analysis exposed compatible scattering of montmorillonite particles and starch granules over the alginate linkages. Meanwhile, the X-ray diffraction analysis confirmed the exfoliation between starch and montmorillonite. Storage of T. harzianum beads at 5°C was more suitable than storage at 28°C. At low temperature, the encapsulated T. harzianum beads maintained their viability at 6.59 ± 0.12 log CFU g−1 for an effective threshold value for up to seven months. The current findings indicated that the combination of alginate, montmorillonite, and starch is the best formulation of encapsulated T. harzianum with improved conidia shelf life. © 2021 Friends Science Publishers","PeriodicalId":13769,"journal":{"name":"International Journal of Agriculture and Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agriculture and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17957/ijab/15.1812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Biological control agents, such as Trichoderma harzianum, are widely used in sustainable agriculture. However, commercialisation and mass production of biocontrol products have remained a challenge, especially in viability and efficiency in field application. The encapsulation method has emerged as a sophisticated technique to develop the formulation of T. harzianum. Hence, encapsulation through extrusion was used to prepare T. harzianum beads. The physical characteristics comprising weight, diameter, and swelling ability of the beads were significantly improved when the starch percentage was increased. Alginate-montmorillonite-starch (10%) revealed the lowest shrinkage and the highest swelling ability. The interaction within the functional groups of alginate, montmorillonite, and starch was confirmed by the Fourier-transform infrared spectroscopic (FTIR) study. Furthermore, scanning electron microscopic analysis exposed compatible scattering of montmorillonite particles and starch granules over the alginate linkages. Meanwhile, the X-ray diffraction analysis confirmed the exfoliation between starch and montmorillonite. Storage of T. harzianum beads at 5°C was more suitable than storage at 28°C. At low temperature, the encapsulated T. harzianum beads maintained their viability at 6.59 ± 0.12 log CFU g−1 for an effective threshold value for up to seven months. The current findings indicated that the combination of alginate, montmorillonite, and starch is the best formulation of encapsulated T. harzianum with improved conidia shelf life. © 2021 Friends Science Publishers
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
哈茨木霉包埋海藻酸蒙脱石淀粉的研制及对Conidia货架期的评价
哈茨木霉等生物防治剂广泛应用于可持续农业。然而,生物防治产品的商业化和大规模生产仍然是一个挑战,特别是在实地应用的可行性和效率方面。包埋法已成为开发哈齐亚木制剂的一种复杂技术。因此,采用挤压包封的方法制备了哈齐亚木珠粒。当淀粉百分比增加时,珠粒的物理特性(包括重量、直径和溶胀能力)显著改善。海藻酸-蒙脱石淀粉(10%)收缩率最低,溶胀能力最高。傅立叶变换红外光谱(FTIR)研究证实了藻酸盐、蒙脱石和淀粉官能团之间的相互作用。此外,扫描电子显微镜分析揭示了蒙脱石颗粒和淀粉颗粒在藻酸盐键上的相容散射。同时,X射线衍射分析证实了淀粉与蒙脱石之间的剥离作用。在5°C下储存哈茨霉珠比在28°C下更合适。在低温下,包封的哈齐亚木珠在长达七个月的有效阈值内保持其6.59±0.12 log CFU g−1的活力。目前的研究结果表明,海藻酸盐、蒙脱石和淀粉的组合是提高分生孢子保质期的最佳包埋哈茨霉配方。©2021 Friends Science出版社
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Agriculture and Biology
International Journal of Agriculture and Biology AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
1.70
自引率
0.00%
发文量
40
审稿时长
5 months
期刊介绍: Information not localized
期刊最新文献
The Possible Protective Effect of Luteolin in a Thioacetamide Rat Model of Testicular Toxicity Improvement of Micropropagation through Combination of Plant Growth Regulators in Indonesian Sorghum Hybrid Cultivar ‘MARKAZ-2019’: A Spring Wheat Variety for Rainfed Areas of Pakistan Field and In Vitro Evaluation of Mandarin Cultivars Resistance to Alternaria alternata Effects of Threonine Supplementation in Low Protein Diet on Broilers Growth Performance and Biochemical Parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1