Computational techniques for parameter estimation of gravitational wave signals

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY Wiley Interdisciplinary Reviews-Computational Statistics Pub Date : 2020-09-20 DOI:10.1002/wics.1532
R. Meyer, M. Edwards, P. Maturana-Russel, N. Christensen
{"title":"Computational techniques for parameter estimation of gravitational wave signals","authors":"R. Meyer, M. Edwards, P. Maturana-Russel, N. Christensen","doi":"10.1002/wics.1532","DOIUrl":null,"url":null,"abstract":"Since the very first detection of gravitational waves from the coalescence of two black holes in 2015, Bayesian statistical methods have been routinely applied by LIGO and Virgo to extract the signal out of noisy interferometric measurements, obtain point estimates of the physical parameters responsible for producing the signal, and rigorously quantify their uncertainties. Different computational techniques have been devised depending on the source of the gravitational radiation and the gravitational waveform model used. Prominent sources of gravitational waves are binary black hole or neutron star mergers, the only objects that have been observed by detectors to date. But also gravitational waves from core‐collapse supernovae, rapidly rotating neutron stars, and the stochastic gravitational‐wave background are in the sensitivity band of the ground‐based interferometers and expected to be observable in future observation runs. As nonlinearities of the complex waveforms and the high‐dimensional parameter spaces preclude analytic evaluation of the posterior distribution, posterior inference for all these sources relies on computer‐intensive simulation techniques such as Markov chain Monte Carlo methods. A review of state‐of‐the‐art Bayesian statistical parameter estimation methods will be given for researchers in this cross‐disciplinary area of gravitational wave data analysis.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wics.1532","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1532","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

Abstract

Since the very first detection of gravitational waves from the coalescence of two black holes in 2015, Bayesian statistical methods have been routinely applied by LIGO and Virgo to extract the signal out of noisy interferometric measurements, obtain point estimates of the physical parameters responsible for producing the signal, and rigorously quantify their uncertainties. Different computational techniques have been devised depending on the source of the gravitational radiation and the gravitational waveform model used. Prominent sources of gravitational waves are binary black hole or neutron star mergers, the only objects that have been observed by detectors to date. But also gravitational waves from core‐collapse supernovae, rapidly rotating neutron stars, and the stochastic gravitational‐wave background are in the sensitivity band of the ground‐based interferometers and expected to be observable in future observation runs. As nonlinearities of the complex waveforms and the high‐dimensional parameter spaces preclude analytic evaluation of the posterior distribution, posterior inference for all these sources relies on computer‐intensive simulation techniques such as Markov chain Monte Carlo methods. A review of state‐of‐the‐art Bayesian statistical parameter estimation methods will be given for researchers in this cross‐disciplinary area of gravitational wave data analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
引力波信号参数估计的计算技术
自2015年首次探测到两个黑洞合并产生的引力波以来,LIGO和Virgo一直在常规应用贝叶斯统计方法,从噪声干涉测量中提取信号,获得产生信号的物理参数的点估计,并严格量化其不确定性。根据引力辐射的来源和所使用的引力波形模型,已经设计了不同的计算技术。引力波的主要来源是双星黑洞或中子星合并,这是迄今为止探测器观测到的唯一物体。但来自核心坍塌超新星、快速旋转中子星和随机引力波背景的引力波也在地面干涉仪的敏感带内,预计在未来的观测中可以观测到。由于复杂波形和高维参数空间的非线性阻碍了后验分布的分析评估,所有这些源的后验推理都依赖于计算机密集型模拟技术,如马尔可夫链蒙特卡罗方法。将为引力波数据分析这一跨学科领域的研究人员介绍最先进的贝叶斯统计参数估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
期刊最新文献
A spectrum of explainable and interpretable machine learning approaches for genomic studies Functional neuroimaging in the era of Big Data and Open Science: A modern overview Neuroimaging statistical approaches for determining neural correlates of Alzheimer's disease via positron emission tomography imaging Information criteria for model selection Data Integration in Causal Inference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1