Jacob R. Hopkins , Tatiana A. Semenova-Nelsen , Benjamin A. Sikes
{"title":"Land management drives dynamic changes to microbial function through edaphic factors and soil biota","authors":"Jacob R. Hopkins , Tatiana A. Semenova-Nelsen , Benjamin A. Sikes","doi":"10.1016/j.pedobi.2022.150859","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Land management for conservation alters the abiotic and biotic components that underly belowground ecosystem health and function. We know that prescribed burning and grazing influence soil characteristics, nutrients, and biota individually, but rarely have these management effects been explored holistically, affecting an interacting belowground system. Since most belowground functions (e.g., nutrient cycling) arise from feedbacks among many soil factors, a better understanding of system-level responses to distinct management practices, rather than individual component responses, can help us better predict these ecosystem functions. In a late successional tallgrass prairie ecosystem, we contrasted how prescribed fire and mowing altered nutrient cycles<span> through changes to the abiotic soil environment, microbial community structure, and microbial </span></span>enzyme functions. Individual soil factors responded rapidly to both fire and mowing, and remained different from pre-treatment values. However, as a system, many relationships among soil factors that were present before management and lost directly after management, returned 1 month after management. This shows the system-level resilience to management supported by the long evolutionary history between grasslands, fire, and grazing, and illustrates the importance of understanding management effects from a holistic perspective. Since global disturbance regimes and anthropological influence are predicted to change in the future, understanding how belowground components respond to change as a system can help land managers and </span>ecologists alike conserve endangered ecosystems.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"96 ","pages":"Article 150859"},"PeriodicalIF":2.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedobiologia","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031405622016213","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Land management for conservation alters the abiotic and biotic components that underly belowground ecosystem health and function. We know that prescribed burning and grazing influence soil characteristics, nutrients, and biota individually, but rarely have these management effects been explored holistically, affecting an interacting belowground system. Since most belowground functions (e.g., nutrient cycling) arise from feedbacks among many soil factors, a better understanding of system-level responses to distinct management practices, rather than individual component responses, can help us better predict these ecosystem functions. In a late successional tallgrass prairie ecosystem, we contrasted how prescribed fire and mowing altered nutrient cycles through changes to the abiotic soil environment, microbial community structure, and microbial enzyme functions. Individual soil factors responded rapidly to both fire and mowing, and remained different from pre-treatment values. However, as a system, many relationships among soil factors that were present before management and lost directly after management, returned 1 month after management. This shows the system-level resilience to management supported by the long evolutionary history between grasslands, fire, and grazing, and illustrates the importance of understanding management effects from a holistic perspective. Since global disturbance regimes and anthropological influence are predicted to change in the future, understanding how belowground components respond to change as a system can help land managers and ecologists alike conserve endangered ecosystems.
期刊介绍:
Pedobiologia publishes peer reviewed articles describing original work in the field of soil ecology, which includes the study of soil organisms and their interactions with factors in their biotic and abiotic environments.
Analysis of biological structures, interactions, functions, and processes in soil is fundamental for understanding the dynamical nature of terrestrial ecosystems, a prerequisite for appropriate soil management. The scope of this journal consists of fundamental and applied aspects of soil ecology; key focal points include interactions among organisms in soil, organismal controls on soil processes, causes and consequences of soil biodiversity, and aboveground-belowground interactions.
We publish:
original research that tests clearly defined hypotheses addressing topics of current interest in soil ecology (including studies demonstrating nonsignificant effects);
descriptions of novel methodological approaches, or evaluations of current approaches, that address a clear need in soil ecology research;
innovative syntheses of the soil ecology literature, including metaanalyses, topical in depth reviews and short opinion/perspective pieces, and descriptions of original conceptual frameworks; and
short notes reporting novel observations of ecological significance.