Oxometalate- and Soft-Oxometalate-Based Hybrid Materials: From Synthesis to Catalytic Applications

IF 2.4 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Molecular and Engineering Materials Pub Date : 2020-12-08 DOI:10.1142/s2251237320300028
K. Das, Soumyajit Roy
{"title":"Oxometalate- and Soft-Oxometalate-Based Hybrid Materials: From Synthesis to Catalytic Applications","authors":"K. Das, Soumyajit Roy","doi":"10.1142/s2251237320300028","DOIUrl":null,"url":null,"abstract":"Multi-component hybrid materials are intriguing. They have the potential to act as a platform to manifest the properties of their components. In this review, we discuss the catalytic applications of few such hybrids that are based on oxometalates (OMs). Due to the structural flexibility and enormous properties, OMs are unrivaled in the field of catalysis. Thus, here we primarily focus on the synthesis and catalysis of such OM-based hybrids. The present overview shows that it is possible to improve the catalytic property of bare oxometalates and even that of their soft-matter state namely soft-oxometalates (SOMs) through rational choice of organic ligand and oxometalates.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular and Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2251237320300028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-component hybrid materials are intriguing. They have the potential to act as a platform to manifest the properties of their components. In this review, we discuss the catalytic applications of few such hybrids that are based on oxometalates (OMs). Due to the structural flexibility and enormous properties, OMs are unrivaled in the field of catalysis. Thus, here we primarily focus on the synthesis and catalysis of such OM-based hybrids. The present overview shows that it is possible to improve the catalytic property of bare oxometalates and even that of their soft-matter state namely soft-oxometalates (SOMs) through rational choice of organic ligand and oxometalates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧酸盐和软氧酸盐基杂化材料:从合成到催化应用
多组分混合材料很有趣。它们有潜力作为一个平台来展示其组件的属性。在这篇综述中,我们讨论了几种基于氧代金属盐(OM)的杂化物的催化应用。由于其结构的灵活性和巨大的性能,OM在催化领域是无与伦比的。因此,在这里,我们主要关注这种基于OM的杂化物的合成和催化。本综述表明,通过合理选择有机配体和含氧金属盐,可以提高裸含氧金属酸盐的催化性能,甚至可以提高其软质状态,即软含氧金属化物(SOMs)的催化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular and Engineering Materials
Journal of Molecular and Engineering Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
自引率
0.00%
发文量
13
期刊最新文献
Identification of object roughness using a flexible capacitive 3D force transducer featuring an interlocking microstructure Applications of marker assisted gene pyramiding in rice crop improvement Green Synthesis of Copper Nanoparticles Using Flower Extracts: A Promising Route for Enhanced Microelectronics Packaging Characterization of RF-Sputtered ZnO Thin film Coatings on Aluminium (Al6061): Microstructure, Wettability, Cavitation, and Corrosion Analysis Molecular Docking and Ligand-Binding Analysis of Amidine Derivatives Targeting Pseudomonas Aeruginosa and Escherichia Coli Bacterial Strains: An in Silico Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1