Carlos Vladimir Pérez-de Silva, A. Cupul-Magaña, F. Rodríguez-Zaragoza, A. Rodríguez-Troncoso
{"title":"Temporal oceanographic variation using satellite imagery data in the central Mexican Pacific convergence zone","authors":"Carlos Vladimir Pérez-de Silva, A. Cupul-Magaña, F. Rodríguez-Zaragoza, A. Rodríguez-Troncoso","doi":"10.7773/cm.y2023.3260","DOIUrl":null,"url":null,"abstract":"The oceanographic variation of the central Mexican Pacific (CMP) is mainly driven by the California Current and the Mexican Coastal Current, which generate a convergence zone. Little information is available regarding changes in oceanographic variables at the mesoscale level in the CMP. Therefore, this study characterized 6 oceanographic variables (sea surface temperature, chlorophyll concentration [Chl], primary productivity [PP], diffuse attenuation coefficient [K490], and particulate inorganic/organic carbon concentration [PIC, POC]) in the CMP from 2010 to 2017 and their relationships with El Niño/Southern Oscillation (ENSO). The variables were standardized to monthly pixel values of 0.08 latitude degrees, and the study area covered 48,846.48 km2. Friedman tests were used to compare the temporal variation in the variables, while Spearman correlations were used to evaluate the relationship between each variable and the Multivariate ENSO Index (MEI). A cross-correlation analysis was performed to determine the temporal lag between the oceanographic variables and the MEI. The cyclicity of the variation in the CMP was determined by spectral analysis. All variables showed significant differences between months and years. Two seasons defined by temperature were also detected: a cold season (December–June), in which high values of these variables were observed, and a warm season (July–November), in which low values of these variables were observed. No variables were correlated with the MEI; however, a 4-month time lag was identified between the variables and the MEI. The cyclicity of the variables corresponded to the cold and warm seasons. The cold phase of ENSO increased the values of PP, Chl, and K490 up to 4 times compared to those of other years. Taken together, the observed variation in oceanographic conditions makes the CMP one of the most dynamic coastal regions of the Mexican Pacific.","PeriodicalId":50702,"journal":{"name":"Ciencias Marinas","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciencias Marinas","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7773/cm.y2023.3260","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The oceanographic variation of the central Mexican Pacific (CMP) is mainly driven by the California Current and the Mexican Coastal Current, which generate a convergence zone. Little information is available regarding changes in oceanographic variables at the mesoscale level in the CMP. Therefore, this study characterized 6 oceanographic variables (sea surface temperature, chlorophyll concentration [Chl], primary productivity [PP], diffuse attenuation coefficient [K490], and particulate inorganic/organic carbon concentration [PIC, POC]) in the CMP from 2010 to 2017 and their relationships with El Niño/Southern Oscillation (ENSO). The variables were standardized to monthly pixel values of 0.08 latitude degrees, and the study area covered 48,846.48 km2. Friedman tests were used to compare the temporal variation in the variables, while Spearman correlations were used to evaluate the relationship between each variable and the Multivariate ENSO Index (MEI). A cross-correlation analysis was performed to determine the temporal lag between the oceanographic variables and the MEI. The cyclicity of the variation in the CMP was determined by spectral analysis. All variables showed significant differences between months and years. Two seasons defined by temperature were also detected: a cold season (December–June), in which high values of these variables were observed, and a warm season (July–November), in which low values of these variables were observed. No variables were correlated with the MEI; however, a 4-month time lag was identified between the variables and the MEI. The cyclicity of the variables corresponded to the cold and warm seasons. The cold phase of ENSO increased the values of PP, Chl, and K490 up to 4 times compared to those of other years. Taken together, the observed variation in oceanographic conditions makes the CMP one of the most dynamic coastal regions of the Mexican Pacific.
期刊介绍:
A bilingual open-access publication, Ciencias Marinas (CM) is an international peer-reviewed journal that contains original research findings in all areas of marine science. It is published quarterly by the Autonomous University of Baja California, Mexico, and all its contents are publicly available on our journal website. Though a limited number of copies are still printed, the journal is mainly distributed in its electronic format.
CM was conceived in 1973 as part of an academic project aimed to entice local researchers to publicly disclose their findings by adopting the culture of peer-review publishing. This academic project evolved into an international journal after accepting papers from researchers in the United States and, eventually, other parts of the world. Because of the diversity in authorship, CM issues were initially published in either Spanish or English, and occasionally in both languages. It was not until 1984 when CM included both language versions of all its contents, and it then became the fully bilingual journal it still is today. At CM we believe our inclusive format allows us not only to address a wider range of submissions from international authors but also to make published findings available to a wider international audience.
So whether you are looking for information on the redfish in Icelandic waters or the physical and biological properties of the Gulf of California, feel free to peruse CM contents. You may find them to provide source material for your research.