Optimizing rapid pentachlorophenol biodegradation using response surface methodology

IF 1.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Bioremediation Journal Pub Date : 2022-06-24 DOI:10.1080/10889868.2022.2086528
O. Khalil, M. Omara
{"title":"Optimizing rapid pentachlorophenol biodegradation using response surface methodology","authors":"O. Khalil, M. Omara","doi":"10.1080/10889868.2022.2086528","DOIUrl":null,"url":null,"abstract":"Abstract Pentachlorophenol (PCP) is one of the most toxic pollutants in the environment during modern industrial processes. Statistical experimental designs based on biological methods optimized the PCP biodegradation by Bacillus mucilaginosus and Pseudomonas plecoglossicida. Four factors were selected for PCP removal; glucose, ferric ammonium citrate, PCP concentration, and incubation period. PBD and CCD were performed to recognize the maximum PCP biodegradation. The maximum PCP biodegradation in PBD by B. mucilaginosus was obtained at glucose, 0.5 (g/l); ferric ammonium citrate, 0.5 (g/l); PCP concentration, 300 (mg/l) and incubation period, 3 (days) while the maximum conditions by P. plecoglossicida were glucose, 0.5 (g/l); ferric ammonium citrate, 0.5 (g/l); PCP concentration, 100 (mg/l) and incubation period, 3 (days). In addition, CCD predicted the optimum predicted degradation of PCP (100%) by the two selected strains using glucose (1.0 g/l), ferric ammonium citrate (0.059 mg/l), PCP concentration (350 mg/l), and 2-days for B. mucilaginosus. While glucose (0.276 g), ferric ammonium citrate (0.047 mg/l) and 2-days were optimal conditions for P. plecoglossicida. P. plecoglossicida.and B. mucilaginosus could degrade more than 72% and 61% of PCP when these isolates were grown under a high concentration of PCP (300 and 350 mg L−1) in a mineral salt medium, respectively.","PeriodicalId":8935,"journal":{"name":"Bioremediation Journal","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioremediation Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10889868.2022.2086528","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Pentachlorophenol (PCP) is one of the most toxic pollutants in the environment during modern industrial processes. Statistical experimental designs based on biological methods optimized the PCP biodegradation by Bacillus mucilaginosus and Pseudomonas plecoglossicida. Four factors were selected for PCP removal; glucose, ferric ammonium citrate, PCP concentration, and incubation period. PBD and CCD were performed to recognize the maximum PCP biodegradation. The maximum PCP biodegradation in PBD by B. mucilaginosus was obtained at glucose, 0.5 (g/l); ferric ammonium citrate, 0.5 (g/l); PCP concentration, 300 (mg/l) and incubation period, 3 (days) while the maximum conditions by P. plecoglossicida were glucose, 0.5 (g/l); ferric ammonium citrate, 0.5 (g/l); PCP concentration, 100 (mg/l) and incubation period, 3 (days). In addition, CCD predicted the optimum predicted degradation of PCP (100%) by the two selected strains using glucose (1.0 g/l), ferric ammonium citrate (0.059 mg/l), PCP concentration (350 mg/l), and 2-days for B. mucilaginosus. While glucose (0.276 g), ferric ammonium citrate (0.047 mg/l) and 2-days were optimal conditions for P. plecoglossicida. P. plecoglossicida.and B. mucilaginosus could degrade more than 72% and 61% of PCP when these isolates were grown under a high concentration of PCP (300 and 350 mg L−1) in a mineral salt medium, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
响应面法优化五氯苯酚的快速生物降解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioremediation Journal
Bioremediation Journal ENVIRONMENTAL SCIENCES-
CiteScore
5.30
自引率
0.00%
发文量
36
审稿时长
9 months
期刊介绍: Bioremediation Journal is a peer-reviewed quarterly that publishes current, original laboratory and field research in bioremediation, the use of biological and supporting physical treatments to treat contaminated soil and groundwater. The journal rapidly disseminates new information on emerging and maturing bioremediation technologies and integrates scientific research and engineering practices. The authors, editors, and readers are scientists, field engineers, site remediation managers, and regulatory experts from the academic, industrial, and government sectors worldwide. High-quality, original articles make up the primary content. Other contributions are technical notes, short communications, and occasional invited review articles.
期刊最新文献
Study on the bioremediation of alachlor-contaminated farmland soil and the toxicity of its metabolites by dominant bacterial Metallophores as promising chelates for heavy metals removal from polluted water Bioremediation of complex contaminated Yamuna River India by using selected cyanobacteria Acetonitrile biodegradation and total nitrogen removal in a single-stage airlift bioreactor using bacterial endophytes Investigating the optimum conditions for azo dye (methyl orange and methyl red) decolorization from aqueous solution using oyster mushroom (Pleurotus ostreatus): a mycoremediation approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1