The Influence of Statistical Normalization Techniques on Performance Ranking Results

Pub Date : 2022-01-01 DOI:10.4018/ijban.298017
Nazlı Ersoy
{"title":"The Influence of Statistical Normalization Techniques on Performance Ranking Results","authors":"Nazlı Ersoy","doi":"10.4018/ijban.298017","DOIUrl":null,"url":null,"abstract":"In this study, the most suitable normalization techniques for the multi-criteria decision making (MCDM) method proposed by Biswas and Saha were compared and a real situation was analyzed. In the study, the financial performance of the top 10 companies on the FORTUNE 500 list for 2019 was evaluated using seven financial ratios and five well-known normalization techniques. The results have shown that the max normalization procedure generated the most consistent results for Biswas and Saha’s MCDM method. The study is the first to test the suitability of different normalization techniques for the MCDM method proposed by Biswas and Saha. Also, this paper provides decision support that can be used for the selection of the best normalization techniques for other MCDM methods.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijban.298017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the most suitable normalization techniques for the multi-criteria decision making (MCDM) method proposed by Biswas and Saha were compared and a real situation was analyzed. In the study, the financial performance of the top 10 companies on the FORTUNE 500 list for 2019 was evaluated using seven financial ratios and five well-known normalization techniques. The results have shown that the max normalization procedure generated the most consistent results for Biswas and Saha’s MCDM method. The study is the first to test the suitability of different normalization techniques for the MCDM method proposed by Biswas and Saha. Also, this paper provides decision support that can be used for the selection of the best normalization techniques for other MCDM methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
统计归一化技术对性能排序结果的影响
在本研究中,比较了Biswas和Saha提出的最适合多准则决策(MCDM)方法的归一化技术,并分析了实际情况。在这项研究中,使用七种财务比率和五种著名的归一化技术对《财富》500强榜单上排名前十的公司2019年的财务业绩进行了评估。结果表明,最大归一化过程为Biswas和Saha的MCDM方法产生了最一致的结果。该研究首次测试了Biswas和Saha提出的MCDM方法的不同归一化技术的适用性。此外,本文还提供了决策支持,可用于为其他MCDM方法选择最佳归一化技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1