Green chemistry approach to the synthesis of zinc nanoparticles using Cyperus rotundus rhizome extract for the treatment of lung well-differentiated bronchogenic adenocarcinoma

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Experimental Nanoscience Pub Date : 2022-09-08 DOI:10.1080/17458080.2022.2120194
Zhenyu Zhao, Gang Liu, Yi-Chi Lin, Ling-xi Wang
{"title":"Green chemistry approach to the synthesis of zinc nanoparticles using Cyperus rotundus rhizome extract for the treatment of lung well-differentiated bronchogenic adenocarcinoma","authors":"Zhenyu Zhao, Gang Liu, Yi-Chi Lin, Ling-xi Wang","doi":"10.1080/17458080.2022.2120194","DOIUrl":null,"url":null,"abstract":"Abstract In the present study, zinc oxide nanoparticles were green-synthesized using the aqueous extract of the rhizomes of Cyperus rotundus. The chemical methods EDX, FE-SEM, XRD, UV-Vis., and FT-IR analysis were used to characterize ZnONPs@C. rotundus were characterized by analytical techniques including. The FE-SEM image revealed a spherical shape for the nanoparticles in a size range of 38.05 to 75.41 nm and 33.09 nm was calculated for ZnONPs@ C. rotundus crystal size using the XRD results. MTT assay was used on common lung well-differentiated bronchogenic adenocarcinoma cell line i.e. HLC-1 to survey the cytotoxicity and anti-lung well-differentiated bronchogenic adenocarcinoma effects of the synthesized nanoparticles. To determine the antioxidant properties of the synthesized nanoparticles, the DPPH test was used in the presence of butylated hydroxytoluene as the positive control. The synthesized nanoparticles had very low cell viability and high anti-lung well-differentiated bronchogenic adenocarcinoma activities dose-dependently against the HLC-1 cell line without any cytotoxicity on the normal cell line (HUVEC). The synthesized nanoparticles inhibited half of the DPPH molecules at the concentration of 41 µg/mL. Maybe significant anti-human lung well-differentiated bronchogenic adenocarcinoma potentials of the synthesized nanoparticles against common human lung well-differentiated bronchogenic adenocarcinoma cell lines are linked to their antioxidant activities.","PeriodicalId":15673,"journal":{"name":"Journal of Experimental Nanoscience","volume":"17 1","pages":"535 - 547"},"PeriodicalIF":2.6000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Nanoscience","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/17458080.2022.2120194","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In the present study, zinc oxide nanoparticles were green-synthesized using the aqueous extract of the rhizomes of Cyperus rotundus. The chemical methods EDX, FE-SEM, XRD, UV-Vis., and FT-IR analysis were used to characterize ZnONPs@C. rotundus were characterized by analytical techniques including. The FE-SEM image revealed a spherical shape for the nanoparticles in a size range of 38.05 to 75.41 nm and 33.09 nm was calculated for ZnONPs@ C. rotundus crystal size using the XRD results. MTT assay was used on common lung well-differentiated bronchogenic adenocarcinoma cell line i.e. HLC-1 to survey the cytotoxicity and anti-lung well-differentiated bronchogenic adenocarcinoma effects of the synthesized nanoparticles. To determine the antioxidant properties of the synthesized nanoparticles, the DPPH test was used in the presence of butylated hydroxytoluene as the positive control. The synthesized nanoparticles had very low cell viability and high anti-lung well-differentiated bronchogenic adenocarcinoma activities dose-dependently against the HLC-1 cell line without any cytotoxicity on the normal cell line (HUVEC). The synthesized nanoparticles inhibited half of the DPPH molecules at the concentration of 41 µg/mL. Maybe significant anti-human lung well-differentiated bronchogenic adenocarcinoma potentials of the synthesized nanoparticles against common human lung well-differentiated bronchogenic adenocarcinoma cell lines are linked to their antioxidant activities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用绿色化学方法合成锌纳米颗粒治疗肺高分化支气管源性腺癌
摘要本研究以香柏根茎水提物为原料,绿色合成氧化锌纳米颗粒。化学方法:EDX, FE-SEM, XRD, UV-Vis。,用FT-IR分析表征ZnONPs@C。采用分析技术对其进行了表征。FE-SEM图像显示纳米颗粒为球形,尺寸范围为38.05 ~ 75.41 nm, XRD结果表明ZnONPs@ C. rotundus晶粒尺寸为33.09 nm。采用MTT法对常见肺高分化支气管源性腺癌细胞株HLC-1进行细胞毒性及抗肺高分化支气管源性腺癌作用的研究。为了确定合成的纳米颗粒的抗氧化性能,采用DPPH试验,以丁基羟基甲苯为阳性对照。合成的纳米颗粒具有极低的细胞活力和高的抗肺高分化支气管源性腺癌活性,对HLC-1细胞系具有剂量依赖性,对正常细胞系(HUVEC)没有细胞毒性。在所合成的纳米颗粒浓度为41µg/mL时,抑制了一半的DPPH分子。合成的纳米颗粒对常见的人肺高分化支气管腺癌细胞系具有显著的抗人肺高分化支气管腺癌潜能,可能与其抗氧化活性有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Experimental Nanoscience
Journal of Experimental Nanoscience 工程技术-材料科学:综合
CiteScore
4.10
自引率
25.00%
发文量
39
审稿时长
6.5 months
期刊介绍: Journal of Experimental Nanoscience, an international and multidisciplinary journal, provides a showcase for advances in the experimental sciences underlying nanotechnology and nanomaterials. The journal exists to bring together the most significant papers making original contributions to nanoscience in a range of fields including biology and biochemistry, physics, chemistry, chemical, electrical and mechanical engineering, materials, pharmaceuticals and medicine. The aim is to provide a forum in which cross fertilization between application areas, methodologies, disciplines, as well as academic and industrial researchers can take place and new developments can be encouraged.
期刊最新文献
Inhibition of restenosis after balloon injury in rabbit vessels by integrin αvβ3-targeted 10058-F4 nanoparticles Enhancing structural and optical properties of titanium dioxide nanoparticles (TiO2 NPs) incorporating with indium tin oxide nanoparticles (ITO NPs): effects of annealing temperature Alginate-wrapped NiO-ZnO nanocomposites-based catalysts for water treatment Evolution of the precursor structure during the preparation of the nanopowders with perovskite-type LnLn’O3 (Ln, Ln’ = REE) complex oxide phase in the La2O3-Lu2O3-Yb2O3 system Statement of Retraction: Image processing algorithm for mechanical properties testing of high temperature materials based on time‐frequency analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1