Ko-Ting Chen, T. Ho, T. Siow, Yu-Chiang Yeh, Sheng-Yao Huang
{"title":"Individual cerebrocerebellar functional network analysis decoding symptomatologic dynamics of postoperative cerebellar mutism syndrome","authors":"Ko-Ting Chen, T. Ho, T. Siow, Yu-Chiang Yeh, Sheng-Yao Huang","doi":"10.1093/texcom/tgac008","DOIUrl":null,"url":null,"abstract":"Abstract Introduction Postoperative cerebellar mutism syndrome (pCMS) consists of three types of symptoms (motoric, linguistic, and neurobehavioral) in patients with posterior fossa pathologies. The evolutional mechanism of this high cognitive syndromic complex from cerebellar origin remains unconfirmed. Previous studies analyzing CMS patients mostly focused on the association between structural abnormalities that occur during CMS, of which proximal efferent cerebellar pathway (pECP) injury appears to be the most common pathogenesis. However, structural imaging may not be sensitive enough to determine the dynamic course of CMS, since the symptomatology is primarily an output of cerebral operation. Method We took a network approach in a child during her course of development and recovery of the pCMS. On the other hand, a network neuroscience approach using a mathematical model to extract information from functional imaging to generate interregional connectivity provides abundant evidence that the cerebellum is influential in modulating cerebral functions. Result This study applied a network approach to children with pCMS. An individual cerebrocerebellar functional network analysis using graph theory was then performed to determine the network dynamics during CMS. Cross-validation of clinical neurophysiology and functional neuroscience suggested the critical role of the pECP within CMS from the network analysis. Conclusion The employed approach was therefore useful in determining the complex clinical symptoms using individual functional network analysis, which bridges the gap between structural neuroimaging and clinical neurophysiology.","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/texcom/tgac008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Introduction Postoperative cerebellar mutism syndrome (pCMS) consists of three types of symptoms (motoric, linguistic, and neurobehavioral) in patients with posterior fossa pathologies. The evolutional mechanism of this high cognitive syndromic complex from cerebellar origin remains unconfirmed. Previous studies analyzing CMS patients mostly focused on the association between structural abnormalities that occur during CMS, of which proximal efferent cerebellar pathway (pECP) injury appears to be the most common pathogenesis. However, structural imaging may not be sensitive enough to determine the dynamic course of CMS, since the symptomatology is primarily an output of cerebral operation. Method We took a network approach in a child during her course of development and recovery of the pCMS. On the other hand, a network neuroscience approach using a mathematical model to extract information from functional imaging to generate interregional connectivity provides abundant evidence that the cerebellum is influential in modulating cerebral functions. Result This study applied a network approach to children with pCMS. An individual cerebrocerebellar functional network analysis using graph theory was then performed to determine the network dynamics during CMS. Cross-validation of clinical neurophysiology and functional neuroscience suggested the critical role of the pECP within CMS from the network analysis. Conclusion The employed approach was therefore useful in determining the complex clinical symptoms using individual functional network analysis, which bridges the gap between structural neuroimaging and clinical neurophysiology.