{"title":"Effect of solidification end impact vibration on the internal quality of a continuous casting billet","authors":"Baozhen Yang, Hui Zhang, Qiang Lu, Ming-lin Wang, Wenbo Zhao, Chang Shen","doi":"10.1080/03019233.2022.2139048","DOIUrl":null,"url":null,"abstract":"ABSTRACT Application of vibration impact at the outer arc side of a billet with a central linear liquid fraction of 25% -35% at 9.5 m from the meniscus. The results show that the impact vibration with low frequency and high impact energy can not only reduce the central porosity degree of the billet from 1.532 to 1.169, but also compact the liquid core, improve the central porosity and promote the heterogeneous nucleation of the molten pool. High frequency and low impact energy can not only increase the proportion of mixed crystal zone by about 8 %, but also reduce the central carbon segregation index from 1.08 to 1.04. Meanwhile, the two kinds of impact vibrations increase the area ratio of the central carbon segregation index in the range of 0.95-1.05 from 56.32% to 70.26% and 80.17%, respectively, and uniform the central carbon distribution of the billet.","PeriodicalId":14753,"journal":{"name":"Ironmaking & Steelmaking","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ironmaking & Steelmaking","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/03019233.2022.2139048","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT Application of vibration impact at the outer arc side of a billet with a central linear liquid fraction of 25% -35% at 9.5 m from the meniscus. The results show that the impact vibration with low frequency and high impact energy can not only reduce the central porosity degree of the billet from 1.532 to 1.169, but also compact the liquid core, improve the central porosity and promote the heterogeneous nucleation of the molten pool. High frequency and low impact energy can not only increase the proportion of mixed crystal zone by about 8 %, but also reduce the central carbon segregation index from 1.08 to 1.04. Meanwhile, the two kinds of impact vibrations increase the area ratio of the central carbon segregation index in the range of 0.95-1.05 from 56.32% to 70.26% and 80.17%, respectively, and uniform the central carbon distribution of the billet.
期刊介绍:
Ironmaking & Steelmaking: Processes, Products and Applications monitors international technological advances in the industry with a strong element of engineering and product related material. First class refereed papers from the international iron and steel community cover all stages of the process, from ironmaking and its attendant technologies, through casting and steelmaking, to rolling, forming and delivery of the product, including monitoring, quality assurance and environmental issues. The journal also carries research profiles, features on technological and industry developments and expert reviews on major conferences.