Near real-time management of spectral interferences with portable X-ray fluorescence spectrometers: application to Sc quantification in nickeliferous laterite ores
{"title":"Near real-time management of spectral interferences with portable X-ray fluorescence spectrometers: application to Sc quantification in nickeliferous laterite ores","authors":"E. Lacroix, J. Cauzid, Y. Teitler, M. Cathelineau","doi":"10.1144/geochem2021-015","DOIUrl":null,"url":null,"abstract":"Since the development of portable X-ray fluorescence (pXRF) spectrometers, few studies have been conducted on the influence of spectral interferences between chemical elements. This study aims to improve the management of these interferences to obtain more reliable geochemical analyses. We specifically investigate Ca-related interferences on Sc analysis for the case of Ni-rich laterite samples using the Niton XL3t GOLDD + pXRF analyser. Three quantification methods were tested on 59 pelletized samples using the ‘Soil’ mode. The first, named ‘Manufacturer’, represents the elemental quantification directly provided by the device based on regions of interest and multilinear corrections of spectral interferences configured during the spectrometer design. The second, the ‘20 Cu’ method, is based on spectral fitting using the PyMCA software. The third, the ‘18 Fe’ method, combines spectral fitting with modified experimental conditions. For each, a quantification methodology was developed, establishing (i) Ca and Sc calibration lines and (ii) Ca/Sc threshold values delimiting fields of ‘reliable’, ‘to be confirmed’ and ‘unreliable’ measurements. The ‘20 Cu’ and ‘18 Fe’ methods greatly extend the ‘reliable measurements’ field concerning the Ca/Sc ratio compared to the ‘Manufacturer’ method. The ‘18 Fe’ method was also found to provide the most negligible measurement dispersion. Supplementary material: Figures A–F and Tables A and B are available at https://doi.org/10.6084/m9.figshare.c.5511838","PeriodicalId":55114,"journal":{"name":"Geochemistry-Exploration Environment Analysis","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry-Exploration Environment Analysis","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/geochem2021-015","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 4
Abstract
Since the development of portable X-ray fluorescence (pXRF) spectrometers, few studies have been conducted on the influence of spectral interferences between chemical elements. This study aims to improve the management of these interferences to obtain more reliable geochemical analyses. We specifically investigate Ca-related interferences on Sc analysis for the case of Ni-rich laterite samples using the Niton XL3t GOLDD + pXRF analyser. Three quantification methods were tested on 59 pelletized samples using the ‘Soil’ mode. The first, named ‘Manufacturer’, represents the elemental quantification directly provided by the device based on regions of interest and multilinear corrections of spectral interferences configured during the spectrometer design. The second, the ‘20 Cu’ method, is based on spectral fitting using the PyMCA software. The third, the ‘18 Fe’ method, combines spectral fitting with modified experimental conditions. For each, a quantification methodology was developed, establishing (i) Ca and Sc calibration lines and (ii) Ca/Sc threshold values delimiting fields of ‘reliable’, ‘to be confirmed’ and ‘unreliable’ measurements. The ‘20 Cu’ and ‘18 Fe’ methods greatly extend the ‘reliable measurements’ field concerning the Ca/Sc ratio compared to the ‘Manufacturer’ method. The ‘18 Fe’ method was also found to provide the most negligible measurement dispersion. Supplementary material: Figures A–F and Tables A and B are available at https://doi.org/10.6084/m9.figshare.c.5511838
期刊介绍:
Geochemistry: Exploration, Environment, Analysis (GEEA) is a co-owned journal of the Geological Society of London and the Association of Applied Geochemists (AAG).
GEEA focuses on mineral exploration using geochemistry; related fields also covered include geoanalysis, the development of methods and techniques used to analyse geochemical materials such as rocks, soils, sediments, waters and vegetation, and environmental issues associated with mining and source apportionment.
GEEA is well-known for its thematic sets on hot topics and regularly publishes papers from the biennial International Applied Geochemistry Symposium (IAGS).
Papers that seek to integrate geological, geochemical and geophysical methods of exploration are particularly welcome, as are those that concern geochemical mapping and those that comprise case histories. Given the many links between exploration and environmental geochemistry, the journal encourages the exchange of concepts and data; in particular, to differentiate various sources of elements.
GEEA publishes research articles; discussion papers; book reviews; editorial content and thematic sets.