Power transformation in quasi-likelihood innovations for GARCH volatility

IF 0.2 Q4 STATISTICS & PROBABILITY Korean Journal of Applied Statistics Pub Date : 2022-12-31 DOI:10.5351/kjas.2022.35.6.755
Sunah Chung, S. Hwang, Sung Duck Lee
{"title":"Power transformation in quasi-likelihood innovations for GARCH volatility","authors":"Sunah Chung, S. Hwang, Sung Duck Lee","doi":"10.5351/kjas.2022.35.6.755","DOIUrl":null,"url":null,"abstract":"This paper is concerned with power transformations in estimating GARCH volatility. To handle a semiparametric case for which the exact likelihood is not known, quasi-likelihood (QL) rather than maximumlikelihood method is investigated to best estimate GARCH via maximizing the information criteria. A power transformation is introduced in the innovation generating QL estimating functions and then optimum power is selected by maximizing the profile information. A combination of two different power transformations is also studied in order to increase the parameter estimation efficiency. Nine domestic stock prices data are analyzed to order to illustrate the main idea of the paper. The data span includes Covid-19 pandemic period in which financial time series are really volatile.","PeriodicalId":43523,"journal":{"name":"Korean Journal of Applied Statistics","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Applied Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5351/kjas.2022.35.6.755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with power transformations in estimating GARCH volatility. To handle a semiparametric case for which the exact likelihood is not known, quasi-likelihood (QL) rather than maximumlikelihood method is investigated to best estimate GARCH via maximizing the information criteria. A power transformation is introduced in the innovation generating QL estimating functions and then optimum power is selected by maximizing the profile information. A combination of two different power transformations is also studied in order to increase the parameter estimation efficiency. Nine domestic stock prices data are analyzed to order to illustrate the main idea of the paper. The data span includes Covid-19 pandemic period in which financial time series are really volatile.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GARCH波动的拟似然创新中的幂变换
本文研究GARCH波动率估计中的幂变换。为了处理精确似然性未知的半参数情况,研究了拟似然(QL)而不是最大似然方法,通过最大化信息准则来最佳估计GARCH。在创新生成QL估计函数中引入功率变换,然后通过最大化轮廓信息来选择最优功率。为了提高参数估计效率,还研究了两种不同功率变换的组合。通过对9个国内股票价格数据的分析,来说明本文的主要观点。数据跨度包括新冠肺炎大流行时期,在这一时期,金融时间序列非常不稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Korean Journal of Applied Statistics
Korean Journal of Applied Statistics STATISTICS & PROBABILITY-
自引率
50.00%
发文量
17
期刊最新文献
Banded vector heterogeneous autoregression models A study on estimating piecewise linear trend model using the simple moving average of differenced time series Asymmetric volatility models with non-zero origin shifted from zero : Proposal and application Estimating home fire severity with statistical distributions A study on the aspect-based sentiment analysis of multilingual customer reviews
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1