Segmentation of Tissue-Injured Melanoma Convolution Neural Networks

C. Hemalatha, S. Satheesh, N. Kamal, C. Devi, A. Vinothkumar, A. Kannan
{"title":"Segmentation of Tissue-Injured Melanoma Convolution Neural Networks","authors":"C. Hemalatha, S. Satheesh, N. Kamal, C. Devi, A. Vinothkumar, A. Kannan","doi":"10.1166/JCTN.2021.9389","DOIUrl":null,"url":null,"abstract":"In global dermatological conditions, skin lesions are significant. Curable early in the diagnosis, only skin lesions can be accurately identified by highly trained dermatologists. Around 21 million patients are diagnosed with this disease and more than 10.12 million deaths worldwide.\n This paper presents basic work for the detection and ensuing purpose of the CNN to dermoscopic images of skin lesions with cancerous inclination. The models proposed are trained and evaluated in the 2018 International Skin Imaging Collaboration challenge, comprising 2100 training samples and\n 750 test samples, on normal benchmark datasets. Skin-injured images were mainly segment based on person thresholds for channel intensity. The images were added to CNN to extract features. The extracted characteristics were then used to classify the associated ANN classification. In the past,\n many approaches have been used to diagnose subjects with variable success levels. The methodology described in this paper showed associated accuracy of 97.13% in comparison to the previous best of ninety seven.","PeriodicalId":15416,"journal":{"name":"Journal of Computational and Theoretical Nanoscience","volume":"18 1","pages":"1256-1262"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Nanoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/JCTN.2021.9389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

In global dermatological conditions, skin lesions are significant. Curable early in the diagnosis, only skin lesions can be accurately identified by highly trained dermatologists. Around 21 million patients are diagnosed with this disease and more than 10.12 million deaths worldwide. This paper presents basic work for the detection and ensuing purpose of the CNN to dermoscopic images of skin lesions with cancerous inclination. The models proposed are trained and evaluated in the 2018 International Skin Imaging Collaboration challenge, comprising 2100 training samples and 750 test samples, on normal benchmark datasets. Skin-injured images were mainly segment based on person thresholds for channel intensity. The images were added to CNN to extract features. The extracted characteristics were then used to classify the associated ANN classification. In the past, many approaches have been used to diagnose subjects with variable success levels. The methodology described in this paper showed associated accuracy of 97.13% in comparison to the previous best of ninety seven.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
组织损伤黑色素瘤的卷积神经网络分割
在全球皮肤病中,皮肤病变是很重要的。在诊断可治愈的早期,只有皮肤病变才能被训练有素的皮肤科医生准确识别。全世界约有2100万患者被诊断患有这种疾病,死亡人数超过1012万。本文介绍了CNN对具有癌倾向的皮肤病变的皮肤镜图像的检测和后续目的的基本工作。提出的模型在2018年国际皮肤成像协作挑战中进行了训练和评估,该挑战包括2100个训练样本和750个测试样本,在正常基准数据集上。皮肤损伤图像主要是基于通道强度的人阈值分割。将图像添加到CNN中提取特征。然后使用提取的特征对相关的人工神经网络分类进行分类。在过去,许多方法被用来诊断不同成功程度的受试者。本文所描述的方法的相关准确度为97.13%,而之前的最佳准确度为97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational and Theoretical Nanoscience
Journal of Computational and Theoretical Nanoscience 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
3.9 months
期刊介绍: Information not localized
期刊最新文献
The 'Insertion/Deletion' Polymorphism, rs4340 and Diabetes Risk: A Pilot Study from a Hospital Cohort. Reincluding: Providing Support to Reengage Youth who Truant in Secondary Schools. Eosinophil cationic protein (ECP) correlates with eosinophil cell counts in the induced sputum of elite swimmers. Synergic action of an inserted carbohydrate-binding module in a glycoside hydrolase family 5 endoglucanase. [Prognostic impact of prior cardiopathy in patients hospitalized with COVID-19 pneumonia].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1