{"title":"Polyhydroxyalkanoate (PHA) Biopolyesters - Emerging and Major Products of Industrial Biotechnology","authors":"A. Mukherjee, M. Koller","doi":"10.2478/ebtj-2022-0007","DOIUrl":null,"url":null,"abstract":"Abstract Background: Industrial Biotechnology (“White Biotechnology”) is the large-scale production of materials and chemicals using renewable raw materials along with biocatalysts like enzymes derived from microorganisms or by using microorganisms themselves (“whole cell biocatalysis”). While the production of ethanol has existed for several millennia and can be considered a product of Industrial Biotechnology, the application of complex and engineered biocatalysts to produce industrial scale products with acceptable economics is only a few decades old. Bioethanol as fuel, lactic acid as food and PolyHydroxyAlkanoates (PHA) as a processible material are some examples of products derived from Industrial Biotechnology. Purpose and Scope: Industrial Biotechnology is the sector of biotechnology that holds the most promise in reducing our dependence on fossil fuels and mitigating environmental degradation caused by pollution, since all products that are made today from fossil carbon feedstocks could be manufactured using Industrial Biotechnology – renewable carbon feedstocks and biocatalysts. To match the economics of fossil-based bulk products, Industrial Biotechnology-based processes must be sufficiently robust. This aspect continues to evolve with increased technological capabilities to engineer biocatalysts (including microorganisms) and the decreasing relative price difference between renewable and fossil carbon feedstocks. While there have been major successes in manufacturing products from Industrial Biotechnology, challenges exist, although its promise is real. Here, PHA biopolymers are a class of product that is fulfilling this promise. Summary and Conclusion: The authors illustrate the benefits and challenges of Industrial Biotechnology, the circularity and sustainability of such processes, its role in reducing supply chain issues, and alleviating societal problems like poverty and hunger. With increasing awareness among the general public and policy makers of the dangers posed by climate change, pollution and persistent societal issues, Industrial Biotechnology holds the promise of solving these major problems and is poised for a transformative upswing in the manufacture of bulk chemicals and materials from renewable feedstocks and biocatalysts.","PeriodicalId":22379,"journal":{"name":"The EuroBiotech Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EuroBiotech Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ebtj-2022-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 12
Abstract
Abstract Background: Industrial Biotechnology (“White Biotechnology”) is the large-scale production of materials and chemicals using renewable raw materials along with biocatalysts like enzymes derived from microorganisms or by using microorganisms themselves (“whole cell biocatalysis”). While the production of ethanol has existed for several millennia and can be considered a product of Industrial Biotechnology, the application of complex and engineered biocatalysts to produce industrial scale products with acceptable economics is only a few decades old. Bioethanol as fuel, lactic acid as food and PolyHydroxyAlkanoates (PHA) as a processible material are some examples of products derived from Industrial Biotechnology. Purpose and Scope: Industrial Biotechnology is the sector of biotechnology that holds the most promise in reducing our dependence on fossil fuels and mitigating environmental degradation caused by pollution, since all products that are made today from fossil carbon feedstocks could be manufactured using Industrial Biotechnology – renewable carbon feedstocks and biocatalysts. To match the economics of fossil-based bulk products, Industrial Biotechnology-based processes must be sufficiently robust. This aspect continues to evolve with increased technological capabilities to engineer biocatalysts (including microorganisms) and the decreasing relative price difference between renewable and fossil carbon feedstocks. While there have been major successes in manufacturing products from Industrial Biotechnology, challenges exist, although its promise is real. Here, PHA biopolymers are a class of product that is fulfilling this promise. Summary and Conclusion: The authors illustrate the benefits and challenges of Industrial Biotechnology, the circularity and sustainability of such processes, its role in reducing supply chain issues, and alleviating societal problems like poverty and hunger. With increasing awareness among the general public and policy makers of the dangers posed by climate change, pollution and persistent societal issues, Industrial Biotechnology holds the promise of solving these major problems and is poised for a transformative upswing in the manufacture of bulk chemicals and materials from renewable feedstocks and biocatalysts.