The Strategy for Constructing the Structure: Pt-O-Ce3+ Applied in Efficient NOx Removal

Guoquan Liu, Zhifei Hao, Xueyue Mi, Nan Ma, He Zhang, Yi Li, Sihui Zhan
{"title":"The Strategy for Constructing the Structure: Pt-O-Ce3+ Applied in Efficient NOx Removal","authors":"Guoquan Liu, Zhifei Hao, Xueyue Mi, Nan Ma, He Zhang, Yi Li, Sihui Zhan","doi":"10.3389/fenvc.2021.672844","DOIUrl":null,"url":null,"abstract":"Exploring a unique structure with superior catalytic performance has remained a severe challenge in many important catalytic reactions. Here, we reported a phenomenon that CeO2-based catalysts loaded with different Pt precursors showed a significant difference in the performance of the reduction of NO with H2. The supported platinum nitrate [PtCe(N)] exhibited a superior low-temperature catalytic performance than the supported chloroplatinic acid [PtCe(C)]. In a wide operating temperature (125–200°C), more than 80% NOx conversion was achieved over PtCe(N) as well as excellent thermal stability. Various characterizations were used to study the microstructure and chemical electronic states. Results showed the introduction of a low valence state of Pt species into the CeO2 resulted in the rearrangement of charges on the surface of CeO2, accompanied by increasing contents of oxygen vacancies and Ce3+ sites. Furthermore, the X-ray photoelectron spectroscopy (XPS) and Raman spectra confirmed that the divalent Pt atom could substitute Ce atom to form the Pt-O-Ce3+ structure, which was the base unit in the high-performance PtCe(N) catalyst. The tunable catalytic system of the Pt-O-Ce3+ structure provides a strategy for the design of supported metal catalysts and may as a model unit for future studies of many other reactions.","PeriodicalId":73082,"journal":{"name":"Frontiers in environmental chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in environmental chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fenvc.2021.672844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Exploring a unique structure with superior catalytic performance has remained a severe challenge in many important catalytic reactions. Here, we reported a phenomenon that CeO2-based catalysts loaded with different Pt precursors showed a significant difference in the performance of the reduction of NO with H2. The supported platinum nitrate [PtCe(N)] exhibited a superior low-temperature catalytic performance than the supported chloroplatinic acid [PtCe(C)]. In a wide operating temperature (125–200°C), more than 80% NOx conversion was achieved over PtCe(N) as well as excellent thermal stability. Various characterizations were used to study the microstructure and chemical electronic states. Results showed the introduction of a low valence state of Pt species into the CeO2 resulted in the rearrangement of charges on the surface of CeO2, accompanied by increasing contents of oxygen vacancies and Ce3+ sites. Furthermore, the X-ray photoelectron spectroscopy (XPS) and Raman spectra confirmed that the divalent Pt atom could substitute Ce atom to form the Pt-O-Ce3+ structure, which was the base unit in the high-performance PtCe(N) catalyst. The tunable catalytic system of the Pt-O-Ce3+ structure provides a strategy for the design of supported metal catalysts and may as a model unit for future studies of many other reactions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pt-O-Ce3+高效脱硝结构的构建策略
在许多重要的催化反应中,寻找具有优异催化性能的独特结构仍然是一个严峻的挑战。本文报道了负载不同Pt前驱体的ceo2基催化剂在H2还原NO的性能上有显著差异的现象。负载型硝酸铂[PtCe(N)]的低温催化性能优于负载型氯铂酸[PtCe(C)]。在较宽的工作温度(125-200°C)下,通过PtCe(N)实现了80%以上的NOx转化率,并具有优异的热稳定性。采用各种表征方法对其微观结构和化学电子态进行了研究。结果表明,在CeO2中引入低价态Pt后,CeO2表面电荷发生重排,氧空位和Ce3+位的含量增加。此外,x射线光电子能谱(XPS)和拉曼光谱证实,二价Pt原子可以取代Ce原子形成Pt- o - ce3 +结构,这是高性能PtCe(N)催化剂的基本单元。Pt-O-Ce3+结构的可调催化体系为负载型金属催化剂的设计提供了一种策略,并可作为未来许多其他反应研究的模型单元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Occurrence of 80 per and polyfluorinated alkyl substances (PFAS) in muscle and liver tissues of marine mammals of the St. Lawrence Estuary and Gulf, Quebec, Canada Method optimization for benchtop mass spectrometry imaging of lipids in Eisenia hortensis A review of per- and polyfluoroalkyl substances in biosolids: geographical distribution and regulations Air non-thermal plasma, a green approach for the treatment of contaminated water: the case of sulfamethoxazole Performance of pitcher-type POU filters for the removal of 75 PFAS from drinking water: comparing different water sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1