Protection of Steel Rebar in Salt-Contaminated Cement Mortar Using Epoxy Nanocomposite Coatings

IF 2.3 Q3 ELECTROCHEMISTRY International journal of electrochemistry Pub Date : 2018-04-24 DOI:10.1155/2018/8386426
T. Nguyen
{"title":"Protection of Steel Rebar in Salt-Contaminated Cement Mortar Using Epoxy Nanocomposite Coatings","authors":"T. Nguyen","doi":"10.1155/2018/8386426","DOIUrl":null,"url":null,"abstract":"Epoxy reinforced with two kinds of nanoparticles dealing with nano-SiO2 and nano-Fe2O3 was coated on steel rebar embedded in a chloride contaminated cement mortar. NaCl was added to the fresh Portland cement paste (at 0.3% and 0.5% by weight of cement) to simulate the chloride contamination at the critical level. The effect of incorporating nanoparticles on the corrosion resistance of epoxy-coated steel rebar was investigated by linear potentiodynamic polarization and electrochemical impedance spectroscopy. For the 0.3 wt.% chloride mortars, the electrochemical monitoring of the coated steel rebars during immersion for 56 days in 0.1 M NaOH solutions suggested the beneficial role of nano-Fe2O3 particles in significantly improving the corrosion resistance of the epoxy-coated rebar. After 56 days of immersion, the nano-Fe2O3 reduced the corrosion current of epoxy-coated rebar by a factor of 7.9. When the chloride concentration in the cement mortar was 0.5 wt.%, the incorporation of nanoparticles into the epoxy matrix did not enhance the corrosion resistance of epoxy coating for the rebar. At this critical level, chloride ions initiated rebar corrosion through nanoparticles at the epoxy/rebar interface.","PeriodicalId":13933,"journal":{"name":"International journal of electrochemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/8386426","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/8386426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 12

Abstract

Epoxy reinforced with two kinds of nanoparticles dealing with nano-SiO2 and nano-Fe2O3 was coated on steel rebar embedded in a chloride contaminated cement mortar. NaCl was added to the fresh Portland cement paste (at 0.3% and 0.5% by weight of cement) to simulate the chloride contamination at the critical level. The effect of incorporating nanoparticles on the corrosion resistance of epoxy-coated steel rebar was investigated by linear potentiodynamic polarization and electrochemical impedance spectroscopy. For the 0.3 wt.% chloride mortars, the electrochemical monitoring of the coated steel rebars during immersion for 56 days in 0.1 M NaOH solutions suggested the beneficial role of nano-Fe2O3 particles in significantly improving the corrosion resistance of the epoxy-coated rebar. After 56 days of immersion, the nano-Fe2O3 reduced the corrosion current of epoxy-coated rebar by a factor of 7.9. When the chloride concentration in the cement mortar was 0.5 wt.%, the incorporation of nanoparticles into the epoxy matrix did not enhance the corrosion resistance of epoxy coating for the rebar. At this critical level, chloride ions initiated rebar corrosion through nanoparticles at the epoxy/rebar interface.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环氧纳米复合涂层对盐污染水泥砂浆中钢筋的防护
用纳米SiO2和纳米Fe2O3两种纳米颗粒增强环氧树脂涂层在氯污染水泥砂浆中嵌入的钢筋上。将NaCl添加到新的波特兰水泥浆中(按水泥重量计为0.3%和0.5%),以模拟临界水平的氯化物污染。通过线性动电位极化和电化学阻抗谱研究了掺入纳米颗粒对环氧涂层钢筋耐腐蚀性能的影响。对于0.3 wt.%氯化物砂浆,涂层钢筋在0.1中浸泡56天期间的电化学监测 M NaOH溶液表明,纳米Fe2O3颗粒在显著提高环氧涂层钢筋的耐腐蚀性方面发挥了有益作用。浸泡56天后,纳米Fe2O3使环氧涂层钢筋的腐蚀电流降低了7.9倍。当水泥砂浆中的氯化物浓度为0.5时 在环氧树脂基体中掺入纳米颗粒并不能提高环氧涂层对钢筋的耐腐蚀性。在这个临界水平上,氯离子通过环氧树脂/钢筋界面的纳米颗粒引发钢筋腐蚀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
2
审稿时长
7 weeks
期刊最新文献
Effect of Surface Composition on Electrochemical Oxidation Reaction of Carbon Monoxide and Ethanol of PtxRh1−x Solid Solution Electrodes Development and Characterization of a New Solid Polymer Electrolyte for Supercapacitor Device Size-Dependent Chlorinated Nitrogen-Doped Carbon Nanotubes: Their Use as Electrochemical Detectors for Catechol and Resorcinol Enabling the Electrochemical Performance of Maricite-NaMnPO4 and Maricite-NaFePO4 Cathode Materials in Sodium-Ion Batteries Electrooxidation and Development of a Highly Sensitive Electrochemical Probe for Trace Determination of the Steroid 11-Desoxycorticosterone Drug Residues in Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1