Abubakar Y. Waziri, Aisha A. Osigbesan, Fadimatu N. Dabai, Suleiman M. Shuwa, Abdulazeez Y. Atta, Baba Y. Jibril
{"title":"Catalytic reforming of gaseous products from pyrolysis of low-density polyethylene over iron-modified ZSM-5 catalysts","authors":"Abubakar Y. Waziri, Aisha A. Osigbesan, Fadimatu N. Dabai, Suleiman M. Shuwa, Abdulazeez Y. Atta, Baba Y. Jibril","doi":"10.1007/s13203-019-0230-4","DOIUrl":null,"url":null,"abstract":"<p>Converting plastic wastes into fuels through catalytic cracking is continuously gaining interest from researchers worldwide. In this study, the influence of iron on ZSM-5 (Fe-ZSM-5) catalyst on the reforming of the gaseous products of thermal decomposition of low-density polyethylene (LDPE) was investigated. The acidified ZSM-5 catalysts (0, 0.3, 0.6 and 1?wt% of Fe) were prepared and characterized by XRD, BET, FTIR and SEM techniques. In particular, the effects of temperature (400, 450 and 500?°C) and catalyst loading (0.5, 0.75, 1.0, 1.25 and 1.5?g) on a two-stage (pyrolyser and reformer) decomposition of the LDPE wastes into fuel were studied. The liquid fraction produced was characterized using FTIR and GC/MS techniques. The study showed that the increase in pyrolysis temperature (400–500?°C) increases the volume of non-condensable gas (31–58?wt%) and decreases the volume of the condensates (69–41?wt%) in both the thermal and catalytic pyrolyses. However, the trend was at higher level for the catalytic pyrolysis. The increase in temperature for the thermal pyrolysis had less significant effect on the aromatization content of the liquid condensate compared to the catalytic pyrolysis. The FTIR results show a significant increase in aromatic contents and decrease in the aliphatic of the liquid fraction for the catalytic pyrolysis reforming when compared with thermal pyrolysis. The GC/MS results confirmed the aromatic hydrocarbon compositions, predominantly p-xylene, increased relatively to about 70% in the liquid fraction for the best catalyst (1.25?g of catalyst and 1?wt% iron loading on ZSM-5 at 450?°C).</p>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"9 2","pages":"101 - 112"},"PeriodicalIF":0.1250,"publicationDate":"2019-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-019-0230-4","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Petrochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13203-019-0230-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Converting plastic wastes into fuels through catalytic cracking is continuously gaining interest from researchers worldwide. In this study, the influence of iron on ZSM-5 (Fe-ZSM-5) catalyst on the reforming of the gaseous products of thermal decomposition of low-density polyethylene (LDPE) was investigated. The acidified ZSM-5 catalysts (0, 0.3, 0.6 and 1?wt% of Fe) were prepared and characterized by XRD, BET, FTIR and SEM techniques. In particular, the effects of temperature (400, 450 and 500?°C) and catalyst loading (0.5, 0.75, 1.0, 1.25 and 1.5?g) on a two-stage (pyrolyser and reformer) decomposition of the LDPE wastes into fuel were studied. The liquid fraction produced was characterized using FTIR and GC/MS techniques. The study showed that the increase in pyrolysis temperature (400–500?°C) increases the volume of non-condensable gas (31–58?wt%) and decreases the volume of the condensates (69–41?wt%) in both the thermal and catalytic pyrolyses. However, the trend was at higher level for the catalytic pyrolysis. The increase in temperature for the thermal pyrolysis had less significant effect on the aromatization content of the liquid condensate compared to the catalytic pyrolysis. The FTIR results show a significant increase in aromatic contents and decrease in the aliphatic of the liquid fraction for the catalytic pyrolysis reforming when compared with thermal pyrolysis. The GC/MS results confirmed the aromatic hydrocarbon compositions, predominantly p-xylene, increased relatively to about 70% in the liquid fraction for the best catalyst (1.25?g of catalyst and 1?wt% iron loading on ZSM-5 at 450?°C).
期刊介绍:
Applied Petrochemical Research is a quarterly Open Access journal supported by King Abdulaziz City for Science and Technology and all the manuscripts are single-blind peer-reviewed for scientific quality and acceptance. The article-processing charge (APC) for all authors is covered by KACST. Publication of original applied research on all aspects of the petrochemical industry focusing on new and smart technologies that allow the production of value-added end products in a cost-effective way. Topics of interest include: • Review of Petrochemical Processes • Reaction Engineering • Design • Catalysis • Pilot Plant and Production Studies • Synthesis As Applied to any of the following aspects of Petrochemical Research: -Feedstock Petrochemicals: Ethylene Production, Propylene Production, Butylene Production, Aromatics Production (Benzene, Toluene, Xylene etc...), Oxygenate Production (Methanol, Ethanol, Propanol etc…), Paraffins and Waxes. -Petrochemical Refining Processes: Cracking (Steam Cracking, Hydrocracking, Fluid Catalytic Cracking), Reforming and Aromatisation, Isomerisation Processes, Dimerization and Polymerization, Aromatic Alkylation, Oxidation Processes, Hydrogenation and Dehydrogenation. -Products: Polymers and Plastics, Lubricants, Speciality and Fine Chemicals (Adhesives, Fragrances, Flavours etc...), Fibres, Pharmaceuticals.