{"title":"Influence of Raw Meat Content on 3D-Printing and Rheological Properties","authors":"Marius Herold, Sören Morick, O. Hensel, U. Grupa","doi":"10.7455/IJFS/10.1.2021.A6","DOIUrl":null,"url":null,"abstract":"The aim of this study was to investigate the influence of raw chicken meat content on the rheological properties and 3D printability of minced meat mixtures using different concentrations of raw and cooked chicken meat. The meat mass contained yolk, crushed ice, lean raw meat and cooked meat with a high concentration of connective tissue. The concentrations of raw meat added to cooked meat as a percentage of the total weight of meat were 0; 30; 40; 50; 60; 70 and 100. To determine the rheological properties, amplitude sweep and frequency sweep were carried out with a Rheostress RS 300 (Thermo Fisher Scientific Inc.). Cubes were printed, and the printability and optical impression were evaluated using grades from 1-5. The results showed that rheological properties had a strong influence on the printability of meat mass and it is necessary for G' (storage modulus) at the LVR (linear viscoelastic region) to be higher than 7000 Pa. The complex viscosity |η*| should be higher than 170 Pa, at a shear stress τ = 10 Pa, and a frequency f = 10 Hz used to guarantee sufficient solidity.","PeriodicalId":37817,"journal":{"name":"International Journal of Food Studies","volume":"10 1","pages":"195-202"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Food Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7455/IJFS/10.1.2021.A6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1
Abstract
The aim of this study was to investigate the influence of raw chicken meat content on the rheological properties and 3D printability of minced meat mixtures using different concentrations of raw and cooked chicken meat. The meat mass contained yolk, crushed ice, lean raw meat and cooked meat with a high concentration of connective tissue. The concentrations of raw meat added to cooked meat as a percentage of the total weight of meat were 0; 30; 40; 50; 60; 70 and 100. To determine the rheological properties, amplitude sweep and frequency sweep were carried out with a Rheostress RS 300 (Thermo Fisher Scientific Inc.). Cubes were printed, and the printability and optical impression were evaluated using grades from 1-5. The results showed that rheological properties had a strong influence on the printability of meat mass and it is necessary for G' (storage modulus) at the LVR (linear viscoelastic region) to be higher than 7000 Pa. The complex viscosity |η*| should be higher than 170 Pa, at a shear stress τ = 10 Pa, and a frequency f = 10 Hz used to guarantee sufficient solidity.
期刊介绍:
he International Journal of Food Studies (IJFS), a journal of the ISEKI_Food Association, is an international peer-reviewed open-access journal featuring scientific articles on the world of Food in Education, Research and Industry. This journal is a forum created specifically to improve the international dissemination of Food Science and Technology knowledge between Education, Research and Industry stakeholders. Original contributions relevant to the following topics will be considered for publication: -Education methods, including Life Long Learning and e-learning; -Research and application in academia, research, industry; -Critical reviews of scientific literature by researchers, students, invited authors; -Exchange of views and opinions of a scientific nature including testimonies on career experiences in Food Industry/Research/Education (required skills, challenges and successes). Manuscripts focusing on Food related Education topics are particularly welcome.