Analysis Duration of Potential Difference Neutralizer for Substation Grounding System

Riza Arif Pratama, Hermawan, Mochammad Facta
{"title":"Analysis Duration of Potential Difference Neutralizer for Substation Grounding System","authors":"Riza Arif Pratama, Hermawan, Mochammad Facta","doi":"10.25077/jnte.v11n3.1027.2022","DOIUrl":null,"url":null,"abstract":"The grounding system design of the 150 kV substation have resolve affect in lightning strike area. The purpose of this study is to determine the duration of the potential difference penetration that occurs due to direct or indirect lightning strikes. The parameter method grounding system uses a combination of  R and L for the grid section and a combination of RLC for the rod section. Simulations due to direct lightning strikes in nearby areas greatly affect the spike in the amount of potential difference. The potential difference in the area closest to the lightning strike with a maximum surge of 57.42 V with a neutralization duration of 0.21 μs. At the furthest distance from a lightning strike, the maximum potential difference spike is only 3.14 V with a neutralization duration of 2 μs. The average duration of neutralization due to lightning strikes is 2 μs. In the simulation of a direct lightning strike striking electrical equipment, it causes a very high potential difference spike in lightning strike area of ​​992.96 V with a spike duration of 0.012 μs. The farthest area point at the location of the lightning strike has a spike of 31.07 V with a spike duration of 0.06 μs. The duration of neutralization at a potential difference below 1 V, has a duration of more than 2 μs depending on the distance from the location of lightning strike. The grounding system design is able to perform good performance with a fast potential difference neutralization duration in the event of a direct or indirect lightning strike. Lightning strikes that occur will not cause dangerous step and touch voltages for personnel in the 150 kV substation area.","PeriodicalId":30660,"journal":{"name":"Jurnal Nasional Teknik Elektro","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jnte.v11n3.1027.2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The grounding system design of the 150 kV substation have resolve affect in lightning strike area. The purpose of this study is to determine the duration of the potential difference penetration that occurs due to direct or indirect lightning strikes. The parameter method grounding system uses a combination of  R and L for the grid section and a combination of RLC for the rod section. Simulations due to direct lightning strikes in nearby areas greatly affect the spike in the amount of potential difference. The potential difference in the area closest to the lightning strike with a maximum surge of 57.42 V with a neutralization duration of 0.21 μs. At the furthest distance from a lightning strike, the maximum potential difference spike is only 3.14 V with a neutralization duration of 2 μs. The average duration of neutralization due to lightning strikes is 2 μs. In the simulation of a direct lightning strike striking electrical equipment, it causes a very high potential difference spike in lightning strike area of ​​992.96 V with a spike duration of 0.012 μs. The farthest area point at the location of the lightning strike has a spike of 31.07 V with a spike duration of 0.06 μs. The duration of neutralization at a potential difference below 1 V, has a duration of more than 2 μs depending on the distance from the location of lightning strike. The grounding system design is able to perform good performance with a fast potential difference neutralization duration in the event of a direct or indirect lightning strike. Lightning strikes that occur will not cause dangerous step and touch voltages for personnel in the 150 kV substation area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
变电站接地系统电位差中和器的使用寿命分析
150千伏变电站的接地系统设计对雷击区有决定性的影响。本研究的目的是确定由直接或间接雷击引起的电位差穿透的持续时间。参数法接地系统采用R和L的组合为栅格段,RLC的组合为杆段。模拟中由于邻近区域的直接雷击对电位差量的峰值影响很大。最大浪涌57.42 V、中和时间0.21 μs的雷击附近区域的电位差。在距离雷击最远的地方,最大电位差峰仅为3.14 V,中和时间为2 μs。雷击中和的平均时间为2 μs。在直接雷击电气设备的模拟中,在雷击区产生了992.96 V的非常高的电位差尖峰,尖峰持续时间为0.012 μs。雷击位置的最远区域点有31.07 V的峰值,峰值持续时间为0.06 μs。电位差小于1v的中和时间,根据距离雷击地点的距离不同,中和时间大于2 μs。接地系统设计能够在直接或间接雷击时具有良好的性能和快速的电位差中和时间。发生雷击时,不会对150kv变电所区域内的人员产生危险的步进电压和接触电压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
20
期刊最新文献
Development of DC Motor Speed Control Using PID Based on Arduino and Matlab For Laboratory Trainer IoT-Based Disaster Response Robot for Victim Identification in Building Collapses Techno-Economic Analysis for Raja Ampat Off-Grid System Comparative Analysis of Two-Stage and Single-Stage Models in Batteryless PV Systems for Motor Power Supply Enhanced Identification of Valvular Heart Diseases through Selective Phonocardiogram Features Driven by Convolutional Neural Networks (SFD-CNN)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1