A practical guide to microfabrication and patterning of hydrogels for biomimetic cell culture scaffolds

Maria Tenje , Federico Cantoni , Ana María Porras Hernández , Sean S. Searle , Sofia Johansson , Laurent Barbe , Maria Antfolk , Hannah Pohlit
{"title":"A practical guide to microfabrication and patterning of hydrogels for biomimetic cell culture scaffolds","authors":"Maria Tenje ,&nbsp;Federico Cantoni ,&nbsp;Ana María Porras Hernández ,&nbsp;Sean S. Searle ,&nbsp;Sofia Johansson ,&nbsp;Laurent Barbe ,&nbsp;Maria Antfolk ,&nbsp;Hannah Pohlit","doi":"10.1016/j.ooc.2020.100003","DOIUrl":null,"url":null,"abstract":"<div><p>This review article describes microfabrication techniques to define chemical, mechanical and structural patterns in hydrogels and how these can be used to prepare <em>in vivo</em> like, i.e. biomimetic, cell culture scaffolds. Hydrogels are attractive materials for 3D cell cultures as they provide ideal culture conditions and they are becoming more prominently used. Single material gels without any modifications do however have their limitation in use and much can be gained by in improving the <em>in vivo</em> resemblance of simple hydrogel cell culture scaffolds. This review article discusses the most commonly used cross-linking strategies used for hydrogel-based culture scaffolds and gives a brief introduction to microfabrication methods that can be used to define chemical, mechanical and structural patterns in hydrogels with micrometre resolution. The review article also describes a selection of literature references using these microfabrication techniques to prepare organ and disease models with controlled cell adhesion, proliferation and migration. It is intended to serve as an introduction to microfabrication of hydrogels and an inspiration for novel interdisciplinary research projects.</p></div>","PeriodicalId":74371,"journal":{"name":"Organs-on-a-chip","volume":"2 ","pages":"Article 100003"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ooc.2020.100003","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organs-on-a-chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666102020300033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

This review article describes microfabrication techniques to define chemical, mechanical and structural patterns in hydrogels and how these can be used to prepare in vivo like, i.e. biomimetic, cell culture scaffolds. Hydrogels are attractive materials for 3D cell cultures as they provide ideal culture conditions and they are becoming more prominently used. Single material gels without any modifications do however have their limitation in use and much can be gained by in improving the in vivo resemblance of simple hydrogel cell culture scaffolds. This review article discusses the most commonly used cross-linking strategies used for hydrogel-based culture scaffolds and gives a brief introduction to microfabrication methods that can be used to define chemical, mechanical and structural patterns in hydrogels with micrometre resolution. The review article also describes a selection of literature references using these microfabrication techniques to prepare organ and disease models with controlled cell adhesion, proliferation and migration. It is intended to serve as an introduction to microfabrication of hydrogels and an inspiration for novel interdisciplinary research projects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于仿生细胞培养支架的水凝胶微加工和图案的实用指南
这篇综述文章描述了微加工技术来定义水凝胶中的化学、机械和结构模式,以及如何将这些技术用于制备体内的细胞培养支架,即仿生支架。水凝胶是3D细胞培养的有吸引力的材料,因为它们提供了理想的培养条件,并且它们的应用越来越突出。然而,未经任何修饰的单一材料凝胶在使用上有其局限性,通过提高简单水凝胶细胞培养支架的体内相似性可以获得很多好处。这篇综述文章讨论了水凝胶培养支架最常用的交联策略,并简要介绍了微制造方法,这些方法可用于以微米分辨率定义水凝胶中的化学、机械和结构模式。综述文章还介绍了使用这些微加工技术制备具有控制细胞粘附、增殖和迁移的器官和疾病模型的文献参考。它旨在作为水凝胶微加工的介绍,并为新的跨学科研究项目提供灵感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Organs-on-a-chip
Organs-on-a-chip Analytical Chemistry, Biochemistry, Genetics and Molecular Biology (General), Cell Biology, Pharmacology, Toxicology and Pharmaceutics (General)
自引率
0.00%
发文量
0
审稿时长
125 days
期刊最新文献
Simple design for membrane-free microphysiological systems to model the blood-tissue barriers Microfluidics for brain endothelial cell-astrocyte interactions Advancements in organs-on-chips technology for viral disease and anti-viral research Generation of cynomolgus monkey airway, liver ductal, and kidney organoids with pharmacokinetic functions Blood–brain barrier microfluidic chips and their applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1