{"title":"Transcription factor binding and activity on chromatin","authors":"Jorge Trojanowski , Karsten Rippe","doi":"10.1016/j.coisb.2022.100438","DOIUrl":null,"url":null,"abstract":"<div><p><span>The binding of transcription factors (TFs) via their DNA binding domain at gene promoters or enhancers is part of a multi-step process that leads to transcription activation in eukaryotes. The kinetic on- and off-rates of different TF states are governed by a complex interplay of factors that involve chromatin organization on the level of individual nucleosome positions up to actively transcribed chromatin subcompartments on the mesoscale. Furthermore, not only the TF DNA binding domain but also the activation domain affect TF assembly on chromatin. Here, we summarize recent findings on the interplay between TF binding, chromatin organization, and </span>gene activation to highlight features that need to be considered for constructing quantitative models of eukaryotic gene regulation.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"31 ","pages":"Article 100438"},"PeriodicalIF":3.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310022000245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
The binding of transcription factors (TFs) via their DNA binding domain at gene promoters or enhancers is part of a multi-step process that leads to transcription activation in eukaryotes. The kinetic on- and off-rates of different TF states are governed by a complex interplay of factors that involve chromatin organization on the level of individual nucleosome positions up to actively transcribed chromatin subcompartments on the mesoscale. Furthermore, not only the TF DNA binding domain but also the activation domain affect TF assembly on chromatin. Here, we summarize recent findings on the interplay between TF binding, chromatin organization, and gene activation to highlight features that need to be considered for constructing quantitative models of eukaryotic gene regulation.
期刊介绍:
Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution