Heavy tailed but not Zipf: Firm and establishment size in the United States

Pub Date : 2023-04-23 DOI:10.1002/jae.2976
Illenin O. Kondo, Logan T. Lewis, Andrea Stella
{"title":"Heavy tailed but not Zipf: Firm and establishment size in the United States","authors":"Illenin O. Kondo,&nbsp;Logan T. Lewis,&nbsp;Andrea Stella","doi":"10.1002/jae.2976","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Heavy tails play an important role in modern macroeconomics and international economics. Previous work often assumes a Pareto distribution for firm size, typically with a shape parameter approaching Zipf's law. This convenient approximation has dramatic consequences for the importance of large firms in the economy. But we show that a lognormal distribution, or better yet, a convolution of a lognormal and a non-Zipf Pareto distribution, provides a better description of the US economy, using confidential Census Bureau data. These findings hold even far in the upper tail and suggest that heterogeneous firm models should more systematically explore deviations from Zipf's law.</p>\n </div>","PeriodicalId":73603,"journal":{"name":"","volume":"38 5","pages":"767-785"},"PeriodicalIF":0.0,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jae.2976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Heavy tails play an important role in modern macroeconomics and international economics. Previous work often assumes a Pareto distribution for firm size, typically with a shape parameter approaching Zipf's law. This convenient approximation has dramatic consequences for the importance of large firms in the economy. But we show that a lognormal distribution, or better yet, a convolution of a lognormal and a non-Zipf Pareto distribution, provides a better description of the US economy, using confidential Census Bureau data. These findings hold even far in the upper tail and suggest that heterogeneous firm models should more systematically explore deviations from Zipf's law.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重尾而非Zipf:美国的公司和机构规模
重尾理论在现代宏观经济学和国际经济学中占有重要地位。以前的工作通常假设企业规模为帕累托分布,通常具有接近齐夫定律的形状参数。这种方便的近似对大公司在经济中的重要性产生了戏剧性的影响。但我们表明,对数正态分布,或者更好的是,对数正态分布和非zipf帕累托分布的卷积,使用人口普查局的机密数据,可以更好地描述美国经济。这些发现甚至在上尾处也有意义,表明异质企业模型应该更系统地探索与齐夫定律的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1