Intercomparison of Sentinel-2 and modelled snow cover maps in a high-elevation Alpine catchment

IF 3.1 Q2 GEOSCIENCES, MULTIDISCIPLINARY Journal of Hydrology X Pub Date : 2022-05-01 DOI:10.1016/j.hydroa.2022.100123
Florentin Hofmeister , Leonardo F. Arias-Rodriguez , Valentina Premier , Carlo Marin , Claudia Notarnicola , Markus Disse , Gabriele Chiogna
{"title":"Intercomparison of Sentinel-2 and modelled snow cover maps in a high-elevation Alpine catchment","authors":"Florentin Hofmeister ,&nbsp;Leonardo F. Arias-Rodriguez ,&nbsp;Valentina Premier ,&nbsp;Carlo Marin ,&nbsp;Claudia Notarnicola ,&nbsp;Markus Disse ,&nbsp;Gabriele Chiogna","doi":"10.1016/j.hydroa.2022.100123","DOIUrl":null,"url":null,"abstract":"<div><p>Modelling runoff generation in high-elevation Alpine catchments requires detailed knowledge on the spatio-temporal distribution of snow storage. With Sentinel-2 MultiSpectral Instrument (MSI), it is possible to map snow cover with a high temporal and spatial resolution. In contrast to the coarse MODIS data, Sentinel-2 MSI enables the investigation of small-scale differences in snow cover duration in complex terrains due to gravitational redistribution (slope), energy balance and wind-driven redistribution (aspect). In this study, we describe the generation of high-resolution spatial and temporal snow cover data sets from Sentinel-2 images for a high-elevation Alpine catchment and discuss how the data contribute to our understanding of the spatio-temporal snow cover distribution. The quality of snow and cloud detection is evaluated against in-situ snow observations and against other snow and cloud products. The main problem was in the false detection of snow in the presence of clouds and in topographically shaded areas. We then seek to explore the potential of the generated high-resolution snow cover maps in calibrating the gravitational snow redistribution module of a physically based snow model, especially for an area with a very data-scarce point snow observation network. Generally, the calibrated snow model is able to simulate both the mean snow cover duration with a high F1 accuracy score of &gt; 0.9 and the fractional snow-covered area with a correlation coefficient of 0.98. The snow model is also able to reproduce spatio-temporal variability in snow cover duration due to surface energy balance dynamics, wind and gravitational redistribution.</p></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":"15 ","pages":"Article 100123"},"PeriodicalIF":3.1000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589915522000050/pdfft?md5=d2516a474bd52cebdf2ba53ad2737fcd&pid=1-s2.0-S2589915522000050-main.pdf","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589915522000050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 15

Abstract

Modelling runoff generation in high-elevation Alpine catchments requires detailed knowledge on the spatio-temporal distribution of snow storage. With Sentinel-2 MultiSpectral Instrument (MSI), it is possible to map snow cover with a high temporal and spatial resolution. In contrast to the coarse MODIS data, Sentinel-2 MSI enables the investigation of small-scale differences in snow cover duration in complex terrains due to gravitational redistribution (slope), energy balance and wind-driven redistribution (aspect). In this study, we describe the generation of high-resolution spatial and temporal snow cover data sets from Sentinel-2 images for a high-elevation Alpine catchment and discuss how the data contribute to our understanding of the spatio-temporal snow cover distribution. The quality of snow and cloud detection is evaluated against in-situ snow observations and against other snow and cloud products. The main problem was in the false detection of snow in the presence of clouds and in topographically shaded areas. We then seek to explore the potential of the generated high-resolution snow cover maps in calibrating the gravitational snow redistribution module of a physically based snow model, especially for an area with a very data-scarce point snow observation network. Generally, the calibrated snow model is able to simulate both the mean snow cover duration with a high F1 accuracy score of > 0.9 and the fractional snow-covered area with a correlation coefficient of 0.98. The snow model is also able to reproduce spatio-temporal variability in snow cover duration due to surface energy balance dynamics, wind and gravitational redistribution.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sentinel-2和高海拔阿尔卑斯山集水区的模拟积雪地图的相互比较
模拟高海拔高山流域的径流生成需要详细了解雪储量的时空分布。利用Sentinel-2多光谱仪器(MSI),可以绘制具有高时空分辨率的积雪分布图。与粗糙的MODIS数据相比,Sentinel-2 MSI能够调查复杂地形中由于重力再分布(坡度)、能量平衡和风驱动再分布(坡向)而导致的积雪持续时间的小尺度差异。在这项研究中,我们描述了从高海拔高山流域的Sentinel-2图像中生成高分辨率时空积雪数据集的过程,并讨论了这些数据如何有助于我们对积雪时空分布的理解。根据现场雪观测和其他雪和云产品来评估雪和云探测的质量。主要的问题是在有云层和地形阴影的地区对雪的错误检测。然后,我们试图探索生成的高分辨率积雪地图在校准基于物理的积雪模型的重力积雪再分布模块方面的潜力,特别是对于具有非常缺乏数据的点雪观测网络的地区。一般来说,校正后的积雪模型既能模拟平均积雪持续时间,F1精度得分较高,为>与分数积雪面积相关系数为0.98。由于地表能量平衡动力学、风和重力再分布,积雪模式还能够再现积雪持续时间的时空变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydrology X
Journal of Hydrology X Environmental Science-Water Science and Technology
CiteScore
7.00
自引率
2.50%
发文量
20
审稿时长
25 weeks
期刊最新文献
Revisiting model complexity: Space-time correction of high dimensional variable sets in climate model simulations Quantifying the economic value of a national hydrometric network for households Private sensors and crowdsourced rainfall data: Accuracy and potential for modelling pluvial flooding in urban areas of Oslo, Norway A combined data assimilation and deep learning approach for continuous spatio-temporal SWE reconstruction from sparse ground tracks A nonstationary stochastic simulator for clustered regional hydroclimatic extremes to Characterize compound flood risk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1