Jiahao Zhang , Jiemiao Lu , Yichun Zhu , Xiaoxia Shen , Bo Zhu , Luping Qin
{"title":"Roles of endophytic fungi in medicinal plant abiotic stress response and TCM quality development","authors":"Jiahao Zhang , Jiemiao Lu , Yichun Zhu , Xiaoxia Shen , Bo Zhu , Luping Qin","doi":"10.1016/j.chmed.2023.02.006","DOIUrl":null,"url":null,"abstract":"<div><p>Medicinal plants, as medicinal materials and important drug components, have been used in traditional and folk medicine for ages. However, being sessile organisms, they are seriously affected by extreme environmental conditions and abiotic stresses such as salt, heavy metal, temperature, and water stresses. Medicinal plants usually produce specific secondary metabolites to survive such stresses, and these metabolites can often be used for treating human diseases. Recently, medicinal plants have been found to partner with endophytic fungi to form a long-term, stable, and win–win symbiotic relationship. Endophytic fungi can promote secondary metabolite accumulation in medicinal plants. The close relationship can improve host plant resistance to the abiotic stresses of soil salinity, drought, and extreme temperatures. Their symbiosis also sheds light on plant growth and active compound production. Here, we show that endophytic fungi can improve the host medicinal plant resistance to abiotic stress by regulating active compounds, reducing oxidative stress, and regulating the cell ion balance. We also identify the deficiencies and burning issues of available studies and present promising research topics for the future. This review provides guidance for endophytic fungi research to improve the ability of medicinal plants to resist abiotic stress. It also suggests ideas and methods for active compound accumulation in medicinal plants and medicinal material development during the response to abiotic stress.</p></div>","PeriodicalId":9916,"journal":{"name":"Chinese Herbal Medicines","volume":"16 2","pages":"Pages 204-213"},"PeriodicalIF":4.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674638423000710/pdfft?md5=14b53ca680149d54acbcdf98f5332863&pid=1-s2.0-S1674638423000710-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Herbal Medicines","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674638423000710","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Medicinal plants, as medicinal materials and important drug components, have been used in traditional and folk medicine for ages. However, being sessile organisms, they are seriously affected by extreme environmental conditions and abiotic stresses such as salt, heavy metal, temperature, and water stresses. Medicinal plants usually produce specific secondary metabolites to survive such stresses, and these metabolites can often be used for treating human diseases. Recently, medicinal plants have been found to partner with endophytic fungi to form a long-term, stable, and win–win symbiotic relationship. Endophytic fungi can promote secondary metabolite accumulation in medicinal plants. The close relationship can improve host plant resistance to the abiotic stresses of soil salinity, drought, and extreme temperatures. Their symbiosis also sheds light on plant growth and active compound production. Here, we show that endophytic fungi can improve the host medicinal plant resistance to abiotic stress by regulating active compounds, reducing oxidative stress, and regulating the cell ion balance. We also identify the deficiencies and burning issues of available studies and present promising research topics for the future. This review provides guidance for endophytic fungi research to improve the ability of medicinal plants to resist abiotic stress. It also suggests ideas and methods for active compound accumulation in medicinal plants and medicinal material development during the response to abiotic stress.
期刊介绍:
Chinese Herbal Medicines is intended to disseminate the latest developments and research progress in traditional and herbal medical sciences to researchers, practitioners, academics and administrators worldwide in the field of traditional and herbal medicines. The journal's international coverage ensures that research and progress from all regions of the world are widely included.
CHM is a core journal of Chinese science and technology. The journal entered into the ESCI database in 2017, and then was included in PMC, Scopus and other important international search systems. In 2019, CHM was successfully selected for the “China Science and Technology Journal Excellence Action Plan” project, which has markedly improved its international influence and industry popularity. CHM obtained the first impact factor of 3.8 in Journal Citation Reports (JCR) in 2023.