{"title":"Closed-Loop Robotic Arm Manipulation Based on Mixed Reality","authors":"D. Mourtzis, J. Angelopoulos, N. Panopoulos","doi":"10.3390/app12062972","DOIUrl":null,"url":null,"abstract":"Robotic manipulators have become part of manufacturing systems in recent decades. However, in the realm of Industry 4.0, a new type of manufacturing cell has been introduced—the so-called collaborative manufacturing cell. In such collaborative environments, communication between a human operator and robotic manipulators must be flawless, so that smooth collaboration, i.e., human safety, is ensured constantly. Therefore, engineers have focused on the development of suitable human–robot interfaces (HRI) in order to tackle this issue. This research work proposes a closed-loop framework for the human–robot interface based on the utilization of digital technologies, such as Mixed Reality (MR). Concretely, the framework can be realized as a methodology for the remote and safe manipulation of the robotic arm in near real-time, while, simultaneously, safety zones are displayed in the field of view of the shop-floor technician. The method is based on the creation of a Digital Twin of the robotic arm and the setup of a suitable communication framework for continuous and seamless communication between the user interface, the physical robot, and the Digital Twin. The development of the method is based on the utilization of a ROS (Robot Operating System) for the modelling of the Digital Twin, a Cloud database for data handling, and Mixed Reality (MR) for the Human–Machine Interface (HMI). The developed MR application is tested in a laboratory-based machine shop, incorporating collaborative cells.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences-Basel","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/app12062972","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9
Abstract
Robotic manipulators have become part of manufacturing systems in recent decades. However, in the realm of Industry 4.0, a new type of manufacturing cell has been introduced—the so-called collaborative manufacturing cell. In such collaborative environments, communication between a human operator and robotic manipulators must be flawless, so that smooth collaboration, i.e., human safety, is ensured constantly. Therefore, engineers have focused on the development of suitable human–robot interfaces (HRI) in order to tackle this issue. This research work proposes a closed-loop framework for the human–robot interface based on the utilization of digital technologies, such as Mixed Reality (MR). Concretely, the framework can be realized as a methodology for the remote and safe manipulation of the robotic arm in near real-time, while, simultaneously, safety zones are displayed in the field of view of the shop-floor technician. The method is based on the creation of a Digital Twin of the robotic arm and the setup of a suitable communication framework for continuous and seamless communication between the user interface, the physical robot, and the Digital Twin. The development of the method is based on the utilization of a ROS (Robot Operating System) for the modelling of the Digital Twin, a Cloud database for data handling, and Mixed Reality (MR) for the Human–Machine Interface (HMI). The developed MR application is tested in a laboratory-based machine shop, incorporating collaborative cells.
期刊介绍:
Applied Sciences (ISSN 2076-3417) provides an advanced forum on all aspects of applied natural sciences. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.