{"title":"The Effect of Detonator Shell Materials on Detonation Calorimetry Results","authors":"O. Němec, Tomáš Musil, M. Künzel","doi":"10.22211/cejem/131804","DOIUrl":null,"url":null,"abstract":"Detonation calorimetry is a method for the determination of the heat released by the detonation of an explosive charge. Compared to classical combustion calorimetry, detonation calorimetry requires an inert atmosphere, a large sample mass and a detonator for its initiation. This detonator releases some energy for which the results must be corrected. Four types of detonator have been tested in the calorimeter alone and also in combination with explosive charges of PETN. It was found that the aluminium shell of the detonator considerably increases the apparent heat of detonation of the PETN samples in a vacuum, while the presence of combustible (polymeric) components has the opposite effect. Pressurization of the calorimetric vessel with nitrogen gas only partially suppresses these effects. The preferred technique is to use copper or glass confinement in a high pressure inert atmosphere.","PeriodicalId":9679,"journal":{"name":"Central European Journal of Energetic Materials","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Energetic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22211/cejem/131804","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
Detonation calorimetry is a method for the determination of the heat released by the detonation of an explosive charge. Compared to classical combustion calorimetry, detonation calorimetry requires an inert atmosphere, a large sample mass and a detonator for its initiation. This detonator releases some energy for which the results must be corrected. Four types of detonator have been tested in the calorimeter alone and also in combination with explosive charges of PETN. It was found that the aluminium shell of the detonator considerably increases the apparent heat of detonation of the PETN samples in a vacuum, while the presence of combustible (polymeric) components has the opposite effect. Pressurization of the calorimetric vessel with nitrogen gas only partially suppresses these effects. The preferred technique is to use copper or glass confinement in a high pressure inert atmosphere.
期刊介绍:
CEJEM – the newest in Europe scientific journal on energetic materials It provides a forum for scientists interested in the exchange of practical and theoretical knowledge concerning energetic materials: propellants, explosives and pyrotechnics. The journal focuses in particular on the latest results of research on various problems of energetic materials.
Topics:
ignition, combustion and detonation phenomenon;
formulation, synthesis and processing;
analysis and thermal decomposition;
toxicological, environmental and safety aspects of energetic materials production, application, utilization and demilitarization;
molecular orbital calculations;
detonation properties and ballistics;
biotechnology and hazards testing
CEJEM presents original research and interesting reviews. Contributions are from experts in chemistry, physics and engineering from leading research centers in Europe, America and Asia. All submissions are independently refereed by Editorial Board members and by external referees chosen on international basis.