{"title":"Novel PID Tracking Controller for 2DOF Robotic Manipulator System Based on Artificial Bee Colony Algorithm","authors":"N. A. Elkhateeb, R. Badr","doi":"10.1515/ecce-2017-0008","DOIUrl":null,"url":null,"abstract":"Abstract This study presents a well-developed optimization methodology based on the dynamic inertia weight Artificial Bee Colony algorithm (ABC) to design an optimal PID controller for a robotic arm manipulator. The dynamical analysis of robotic arm manipulators investigates a coupling relation between the joint torques applied by the actuators and the position and acceleration of the robot arm. An optimal PID control law is obtained from the proposed (ABC) algorithm and applied to the robotic system. The designed controller optimizes the trajectory of the robot’s end effector for a time-variant input and makes the robot robust in the presence of external disturbance.","PeriodicalId":42365,"journal":{"name":"Electrical Control and Communication Engineering","volume":"13 1","pages":"55 - 62"},"PeriodicalIF":0.5000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ecce-2017-0008","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Control and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ecce-2017-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 25
Abstract
Abstract This study presents a well-developed optimization methodology based on the dynamic inertia weight Artificial Bee Colony algorithm (ABC) to design an optimal PID controller for a robotic arm manipulator. The dynamical analysis of robotic arm manipulators investigates a coupling relation between the joint torques applied by the actuators and the position and acceleration of the robot arm. An optimal PID control law is obtained from the proposed (ABC) algorithm and applied to the robotic system. The designed controller optimizes the trajectory of the robot’s end effector for a time-variant input and makes the robot robust in the presence of external disturbance.