Healing of Pseudomonas aeruginosa-infected wounds in diabetic db/db mice by weakly acidic hypochlorous acid cleansing and silver nanoparticle/chitin-nanofiber sheet covering
{"title":"Healing of Pseudomonas aeruginosa-infected wounds in diabetic db/db mice by weakly acidic hypochlorous acid cleansing and silver nanoparticle/chitin-nanofiber sheet covering","authors":"Masahiro Kuwabara , Yoko Sato , Masayuki Ishihara , Tomohiro Takayama , Shingo Nakamura , Koichi Fukuda , Kaoru Murakami , Hidetaka Yokoe , Tomoharu Kiyosawa","doi":"10.1016/j.wndm.2020.100183","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Weakly acidic hypochlorous acid (HClO; 200 ppm, pH 6.5) is effective against a broad range of microorganisms. We have previously reported a study of developing antimicrobial biomaterials made up of chitin-nanofiber sheet (CNFS) -immobilized </span>silver nanoparticles<span> (CNFS/Ag NPs) and showed that either cleansing with HClO or covering with CNFS/Ag NPs daily for more than 7 days resulted in delayed wound healing. This study aimed to evaluate disinfection and wound healing by a combination of cleansing with HClO and covering with CNFS/Ag NPs daily for 3 days. Applying HClO + CNFS/Ag NPs daily for 3 days and then cleansing with just pure water and covering with CNFS alone daily for 9 days were performed for </span></span><span><em>Pseudomonas aeruginosa</em></span>-infected wounds in <em>db/db</em> diabetic mice. We found a significant enhancement of wound healing and a reduction of bacteria counts compared to the controls. Histological examination showed significantly advanced granulation tissue and capillary formations in the wounds on Day 12. These results suggest that limited disinfection to 3 days with HClO + CNFS/Ag NPs may be sufficient to avoid negative effects on wound repair.</p></div>","PeriodicalId":38278,"journal":{"name":"Wound Medicine","volume":"28 ","pages":"Article 100183"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.wndm.2020.100183","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wound Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213909520300070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 16
Abstract
Weakly acidic hypochlorous acid (HClO; 200 ppm, pH 6.5) is effective against a broad range of microorganisms. We have previously reported a study of developing antimicrobial biomaterials made up of chitin-nanofiber sheet (CNFS) -immobilized silver nanoparticles (CNFS/Ag NPs) and showed that either cleansing with HClO or covering with CNFS/Ag NPs daily for more than 7 days resulted in delayed wound healing. This study aimed to evaluate disinfection and wound healing by a combination of cleansing with HClO and covering with CNFS/Ag NPs daily for 3 days. Applying HClO + CNFS/Ag NPs daily for 3 days and then cleansing with just pure water and covering with CNFS alone daily for 9 days were performed for Pseudomonas aeruginosa-infected wounds in db/db diabetic mice. We found a significant enhancement of wound healing and a reduction of bacteria counts compared to the controls. Histological examination showed significantly advanced granulation tissue and capillary formations in the wounds on Day 12. These results suggest that limited disinfection to 3 days with HClO + CNFS/Ag NPs may be sufficient to avoid negative effects on wound repair.