Yuchi Kang, M. Liu, Xiangping Hu, S. Kao-Walter, Baodi Zhang
{"title":"Theoretical and numerical investigation into brush seal hysteresis without pressure differential","authors":"Yuchi Kang, M. Liu, Xiangping Hu, S. Kao-Walter, Baodi Zhang","doi":"10.1177/0963693519885386","DOIUrl":null,"url":null,"abstract":"Brush seal is a novel type contact seal, and it is well-known due to its excellent performance. However, there are many intrinsic drawbacks, such as hysteresis, which need to be solved. This article focused on modeling hysteresis in both numerical way and analytic way without pressure differential. The numerical simulation was solved by the finite element method. General contact method was used to model the inter-bristle contact, bristle–rotor contact, and bristle–backplate contact. Bristle deformation caused by both vertical and axial tip force was used to validate the numerical model together with reaction force. An analytic model in respect of the strain energy was created. The influence of structure parameters on the hysteresis ratio, with the emphasis on the derivation of hysteresis ratio formula for brush seals, was also presented. Both numerical model and analytic model presented that cant angle is the most influential factor. The aim of the article is to provide a useful theoretical and numerical method to analyze and predict the hysteresis. This work contributes the basis for future hysteresis investigation with pressure differential.","PeriodicalId":55551,"journal":{"name":"Advanced Composites Letters","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0963693519885386","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0963693519885386","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 2
Abstract
Brush seal is a novel type contact seal, and it is well-known due to its excellent performance. However, there are many intrinsic drawbacks, such as hysteresis, which need to be solved. This article focused on modeling hysteresis in both numerical way and analytic way without pressure differential. The numerical simulation was solved by the finite element method. General contact method was used to model the inter-bristle contact, bristle–rotor contact, and bristle–backplate contact. Bristle deformation caused by both vertical and axial tip force was used to validate the numerical model together with reaction force. An analytic model in respect of the strain energy was created. The influence of structure parameters on the hysteresis ratio, with the emphasis on the derivation of hysteresis ratio formula for brush seals, was also presented. Both numerical model and analytic model presented that cant angle is the most influential factor. The aim of the article is to provide a useful theoretical and numerical method to analyze and predict the hysteresis. This work contributes the basis for future hysteresis investigation with pressure differential.
期刊介绍:
Advanced Composites Letters is a peer reviewed, open access journal publishing research which focuses on the field of science and engineering of advanced composite materials or structures.