Surface-based temperature inversion characteristics and impact on surface air temperatures in northwestern Canada from radiosonde data between 1990 and 2016
Nicholas C. Noad, P. Bonnaventure, G. Gilson, H. Jiskoot, Madeleine C. Garibaldi
{"title":"Surface-based temperature inversion characteristics and impact on surface air temperatures in northwestern Canada from radiosonde data between 1990 and 2016","authors":"Nicholas C. Noad, P. Bonnaventure, G. Gilson, H. Jiskoot, Madeleine C. Garibaldi","doi":"10.1139/as-2022-0031","DOIUrl":null,"url":null,"abstract":"Assumptions of linear lapse rates in regions prone to surface-based inversions can generate biases in the prediction of surface air temperature. Although studies of Arctic inversions are common, few regional studies of their characteristics exist in high-latitude regions with mountainous topography. To address this gap, vertical atmospheric temperature profiles for five sites in northwestern Canada were analysed using archived radiosonde data from 1990-2016. We present monthly, seasonal, and annual SBI characteristics including the occurrence of transient and persistent SBIs. A novel metric, surface-based inversion impact (SBIimp), was developed by combining the traditional inversion characteristics of depth, strength, and frequency, and was used to quantify the impact of surface-based inversions on cooling the surface-air temperature. SBIimp values of > 5°C yr-1 and ~ 10°C winter-1 occur locally. A weak linear relationship between sea ice coverage in the Beaufort Sea and SBIimp manifests across parts of the study area, though this relationship does not persist after detrending the datasets. Topographic analysis of areas surrounding each radiosonde location reveal highly variable SBIimp in complex mountain areas and more consistent SBIimp across areas of low relief. Our results can help interpret the role of inversions in climatic conditions maintaining cryospheric elements such as permafrost.","PeriodicalId":48575,"journal":{"name":"Arctic Science","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arctic Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1139/as-2022-0031","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Assumptions of linear lapse rates in regions prone to surface-based inversions can generate biases in the prediction of surface air temperature. Although studies of Arctic inversions are common, few regional studies of their characteristics exist in high-latitude regions with mountainous topography. To address this gap, vertical atmospheric temperature profiles for five sites in northwestern Canada were analysed using archived radiosonde data from 1990-2016. We present monthly, seasonal, and annual SBI characteristics including the occurrence of transient and persistent SBIs. A novel metric, surface-based inversion impact (SBIimp), was developed by combining the traditional inversion characteristics of depth, strength, and frequency, and was used to quantify the impact of surface-based inversions on cooling the surface-air temperature. SBIimp values of > 5°C yr-1 and ~ 10°C winter-1 occur locally. A weak linear relationship between sea ice coverage in the Beaufort Sea and SBIimp manifests across parts of the study area, though this relationship does not persist after detrending the datasets. Topographic analysis of areas surrounding each radiosonde location reveal highly variable SBIimp in complex mountain areas and more consistent SBIimp across areas of low relief. Our results can help interpret the role of inversions in climatic conditions maintaining cryospheric elements such as permafrost.
Arctic ScienceAgricultural and Biological Sciences-General Agricultural and Biological Sciences
CiteScore
5.00
自引率
12.10%
发文量
81
期刊介绍:
Arctic Science is an interdisciplinary journal that publishes original peer-reviewed research from all areas of natural science and applied science & engineering related to northern Polar Regions. The focus on basic and applied science includes the traditional knowledge and observations of the indigenous peoples of the region as well as cutting-edge developments in biological, chemical, physical and engineering science in all northern environments. Reports on interdisciplinary research are encouraged. Special issues and sections dealing with important issues in northern polar science are also considered.