Quality-Guaranteed and Cost-Effective Population Health Profiling: A Deep Active Learning Approach

Long Chen, Jiangtao Wang, P. Thakuriah
{"title":"Quality-Guaranteed and Cost-Effective Population Health Profiling: A Deep Active Learning Approach","authors":"Long Chen, Jiangtao Wang, P. Thakuriah","doi":"10.1145/3617179","DOIUrl":null,"url":null,"abstract":"Reliability and cost are two primary consideration for profiling population-scale prevalence (PPP) of multiple None Communicable Diseases (NCDs). In this paper, we exploit intra-disease and inter-disease correlation in different traditionally-sensed-areas (TS-A) to reduce the required number of the profiling task allocated without compromising the data reliability. Specifically, we propose a novel approach called Compressive Population Health TS-A Selection (CPH-TS), which blends the state-of-the-art profile inference, data augmentation and active learning in a unified deep learning framework. It can actively select a minimum number of TS-A regions for profiling task allocation in each profiling cycle, while deducting of the missing data of the unprofiled regions with a probabilistic guarantee of reliability. We evaluate our approach on real-world prevalence datasets of London, which shows the effectiveness of CPH-TS. In general, CPH-TS assigned 11.1-27.3% fewer tasks than baselines, assigning tasks to only 34.7% of the sub-regions while the profiling error below 5% for 95% of the cycles.","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3617179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reliability and cost are two primary consideration for profiling population-scale prevalence (PPP) of multiple None Communicable Diseases (NCDs). In this paper, we exploit intra-disease and inter-disease correlation in different traditionally-sensed-areas (TS-A) to reduce the required number of the profiling task allocated without compromising the data reliability. Specifically, we propose a novel approach called Compressive Population Health TS-A Selection (CPH-TS), which blends the state-of-the-art profile inference, data augmentation and active learning in a unified deep learning framework. It can actively select a minimum number of TS-A regions for profiling task allocation in each profiling cycle, while deducting of the missing data of the unprofiled regions with a probabilistic guarantee of reliability. We evaluate our approach on real-world prevalence datasets of London, which shows the effectiveness of CPH-TS. In general, CPH-TS assigned 11.1-27.3% fewer tasks than baselines, assigning tasks to only 34.7% of the sub-regions while the profiling error below 5% for 95% of the cycles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
质量保证和成本效益的人口健康分析:一种深度主动学习方法
可靠性和成本是分析多种非传染性疾病(NCDs)人群规模流行率(PPP)的两个主要考虑因素。在本文中,我们利用不同传统感知区域(TS-A)中的疾病内和疾病间相关性,在不影响数据可靠性的情况下减少所需的分析任务分配数量。具体而言,我们提出了一种称为压缩群体健康TS-a选择(CPH-TS)的新方法,该方法在统一的深度学习框架中融合了最先进的简档推断、数据增强和主动学习。它可以在每个评测周期中主动选择最小数量的TS-a区域用于评测任务分配,同时扣除未编译区域的缺失数据,并具有可靠性的概率保证。我们在伦敦真实世界的流行率数据集上评估了我们的方法,这表明了CPH-TS的有效性。总的来说,CPH-TS分配的任务比基线少11.1-27.3%,仅分配给34.7%的子区域,而95%的周期的分析误差低于5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
0.00%
发文量
0
期刊最新文献
A method for comparing time series by untangling time-dependent and independent variations in biological processes AI-assisted Diagnosing, Monitoring, and Treatment of Mental Disorders: A Survey HEalthRecordBERT (HERBERT): leveraging transformers on electronic health records for chronic kidney disease risk stratification iScan: Detection of Colorectal Cancer From CT Scan Images Using Deep Learning A Computation Model to Estimate Interaction Intensity through Non-verbal Behavioral Cues: A Case Study of Intimate Couples under the Impact of Acute Alcohol Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1