Optimization of FSW parameters for maximum UTS of AA6082/SiC/10P composites

IF 1.7 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Advanced Composites Letters Pub Date : 2019-09-04 DOI:10.1177/0963693519867707
R. Bhushan, D. Sharma
{"title":"Optimization of FSW parameters for maximum UTS of AA6082/SiC/10P composites","authors":"R. Bhushan, D. Sharma","doi":"10.1177/0963693519867707","DOIUrl":null,"url":null,"abstract":"Friction stir welding (FSW) offers significant advantage when compared with fusion joining process such as no shield gas or flux are used, no harmful gases are produced, thereby making the FSW environmentally friendly. In this work, an experimental approach has been used for studying and optimizing the FSW process, applied on AA6082/SiC/10P composite plates. In particular, the effect of process parameters on ultimate tensile strength (UTS) of FSW joint has been investigated. The UTS of FSW joints is affected by FSW parameters. The FSW of the AA6082/SiC/10P composite plates was carried out with different combinations of FSW parameters. The experiments were conducted according to the Taguchi’s L9 orthogonal array. Taguchi method of designing the experiments was used for optimization of the FSW parameters. The signal to noise ratio and analysis of variance were used to determine the effects of FSW parameters on the UTS of the welded joints. The optimum FSW parameters for the maximum UTS were found to be the tool rotation speed of 1800 r/min, the welding speed of 100 mm/min and the tool tilt angle of 2°. UTS increased by 24.5% when FSW was carried out at optimum process parameters as compared to initial FSW parameters. Results have shown good agreement between the predicted and experimental values of UTS. High tensile strength is required for use of FSWed AA6082/SiC/10P composite joints in aerospace industry.","PeriodicalId":55551,"journal":{"name":"Advanced Composites Letters","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2019-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0963693519867707","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0963693519867707","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 10

Abstract

Friction stir welding (FSW) offers significant advantage when compared with fusion joining process such as no shield gas or flux are used, no harmful gases are produced, thereby making the FSW environmentally friendly. In this work, an experimental approach has been used for studying and optimizing the FSW process, applied on AA6082/SiC/10P composite plates. In particular, the effect of process parameters on ultimate tensile strength (UTS) of FSW joint has been investigated. The UTS of FSW joints is affected by FSW parameters. The FSW of the AA6082/SiC/10P composite plates was carried out with different combinations of FSW parameters. The experiments were conducted according to the Taguchi’s L9 orthogonal array. Taguchi method of designing the experiments was used for optimization of the FSW parameters. The signal to noise ratio and analysis of variance were used to determine the effects of FSW parameters on the UTS of the welded joints. The optimum FSW parameters for the maximum UTS were found to be the tool rotation speed of 1800 r/min, the welding speed of 100 mm/min and the tool tilt angle of 2°. UTS increased by 24.5% when FSW was carried out at optimum process parameters as compared to initial FSW parameters. Results have shown good agreement between the predicted and experimental values of UTS. High tensile strength is required for use of FSWed AA6082/SiC/10P composite joints in aerospace industry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AA6082/SiC/10P复合材料最大UTS FSW参数的优化
搅拌摩擦焊不使用保护气体和焊剂,不产生有害气体,是一种环境友好型焊接工艺。本文采用实验方法对AA6082/SiC/10P复合材料的FSW工艺进行了研究和优化。重点研究了工艺参数对FSW接头极限抗拉强度的影响。FSW接头的UTS受FSW参数的影响。采用不同的FSW参数组合对AA6082/SiC/10P复合材料板进行了FSW测试。实验依据田口L9正交阵列进行。采用田口法设计实验,对FSW参数进行了优化。采用信噪比和方差分析确定了FSW参数对焊接接头UTS的影响。结果表明,刀具转速为1800 r/min,焊接速度为100 mm/min,刀具倾角为2°时,可获得最大焊接强度。与初始FSW参数相比,在最佳工艺参数下进行FSW时,UTS增加了24.5%。结果表明,UTS的预测值与实验值吻合较好。航空航天工业中使用的fswwed AA6082/SiC/10P复合材料接头要求具有较高的抗拉强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Composites Letters
Advanced Composites Letters 工程技术-材料科学:复合
自引率
0.00%
发文量
0
审稿时长
4.2 months
期刊介绍: Advanced Composites Letters is a peer reviewed, open access journal publishing research which focuses on the field of science and engineering of advanced composite materials or structures.
期刊最新文献
Microstructure and mechanical properties of aluminum matrix composites with different volume fractions of surface-oxidized nanodiamonds Surface modification of hollow glass microsphere and its marine-adaptive composites with epoxy resin Intelligent recognition of acoustic emission signals from damage of glass fiber-reinforced plastics Estimation of fastener pull-through resistance of composite laminates based on generalized regression neural network Post-impact damage tolerance of natural fibre-reinforced sheet moulding compound
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1