{"title":"Synthetic biology-based optogenetic approaches to control therapeutic designer cells","authors":"Maysam Mansouri , Martin Fussenegger","doi":"10.1016/j.coisb.2021.100396","DOIUrl":null,"url":null,"abstract":"<div><p>Optogenetics uses light as a traceless inducer to remotely control cellular behavior with high safety and spatiotemporal precision, and its implementation for therapeutic synthetic biology enable customizable user-defined remedial outputs to be generated from suitably engineered cells. Here, we focus on non-neural optogenetics, describing the tools and strategies available to engineer light-responsive, therapeutic mammalian designer cells and highlighting recent advances in design and translational applications, including cell and gene therapies. We also discuss current limitations in engineering genetically encoded light-sensitive systems and suggest some possible solutions.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"28 ","pages":"Article 100396"},"PeriodicalIF":3.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310021000913/pdfft?md5=7904dcf7df39ed3f040ba8e89584ddda&pid=1-s2.0-S2452310021000913-main.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310021000913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
Optogenetics uses light as a traceless inducer to remotely control cellular behavior with high safety and spatiotemporal precision, and its implementation for therapeutic synthetic biology enable customizable user-defined remedial outputs to be generated from suitably engineered cells. Here, we focus on non-neural optogenetics, describing the tools and strategies available to engineer light-responsive, therapeutic mammalian designer cells and highlighting recent advances in design and translational applications, including cell and gene therapies. We also discuss current limitations in engineering genetically encoded light-sensitive systems and suggest some possible solutions.
期刊介绍:
Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution